Nott2019

echoannot includes data generated by “Nott2019”:

Nott A, Holtman IR, Coufal NG, … Glass CK. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science. 2019 Nov 29;366(6469):1134-1139. doi: 10.1126/science.aay0793. Epub 2019 Nov 14. PMID: 31727856; PMCID: PMC7028213.

Import data

superenhancers <- echoannot::get_NOTT2019_superenhancer_interactome()
enhancers_promoters <- echoannot::NOTT2019_get_promoter_interactome_data()
peaks <- echoannot::NOTT2019_get_epigenomic_peaks() 

Plot

dat <- echodata::BST1
histo_out <- echoannot::NOTT2019_epigenomic_histograms(dat = dat) 
## NOTT2019:: Creating epigenomic histograms plot
## + Inferring genomic limits for window: 1x
## Constructing GRanges query using min/max ranges across one or more chromosomes.
## Downloading data from UCSC.
## Importing... [1] exvivo_H3K27ac_tbp
## Importing... [2] microglia_H3K27ac
## Importing... [3] neurons_H3K27ac
## Importing... [4] oligodendrocytes_H3K27ac
## Importing... [5] astrocytes_H3K27ac
## Importing... [6] exvivo_atac_tbp
## Importing... [7] microglia_atac
## Importing... [8] neurons_atac
## Importing... [9] oligodendrocytes_atac
## Importing... [10] astrocytes_atac
## Importing... [11] microglia_H3K4me3
## Importing... [12] neurons_H3K4me3
## Importing... [13] oligodendrocytes_H3K4me3
## Importing... [14] astrocytes_H3K4me3
## Importing previously downloaded files: /github/home/.cache/R/echoannot/NOTT2019_epigenomic_peaks.rds
## ++ NOTT2019:: 634,540 ranges retrieved.
## dat is already a GRanges object.
## 543 query SNP(s) detected with reference overlap.
## + Calculating max histogram height
## + Converting label units to Mb.
## using coord:genome to parse x scale
## using coord:genome to parse x scale
## Warning in !vapply(ggl, fixed, logical(1L)) & !vapply(PlotList, is,
## "Ideogram", : longer object length is not a multiple of shorter object length
## Found more than one class "simpleUnit" in cache; using the first, from namespace 'hexbin'
## Also defined by 'ggbio'
## Found more than one class "unit" in cache; using the first, from namespace 'hexbin'
## Also defined by 'ggbio'

In addition to the plot object, tables of both raw read ranges and called peaks are included in the output list.

knitr::kable(head(histo_out$data$raw))
seqnames start end width strand score Cell_type Assay Experiment
chr4 14737349 14737411 63 * 0.6 microglia H3K27ac exvivo H3K27ac tbp
chr4 14737488 14737562 75 * 0.2 microglia H3K27ac exvivo H3K27ac tbp
chr4 14737692 14737766 75 * 0.6 microglia H3K27ac exvivo H3K27ac tbp
chr4 14737782 14737856 75 * 0.4 microglia H3K27ac exvivo H3K27ac tbp
chr4 14738054 14738126 73 * 0.6 microglia H3K27ac exvivo H3K27ac tbp
chr4 14738127 14738128 2 * 1.2 microglia H3K27ac exvivo H3K27ac tbp
knitr::kable(head(histo_out$data$peaks))
seqnames start end width strand Assay Marker Cell_type Cell_type.1 Assay.1 Experiment y
4 14745668 14746002 335 * peaks Olig2 oligo microglia H3K27ac exvivo H3K27ac tbp -1.1e-06
4 14751439 14751837 399 * peaks Olig2 oligo microglia H3K27ac exvivo H3K27ac tbp -1.1e-06
4 14768551 14768735 185 * peaks PU1 microglia microglia H3K27ac exvivo H3K27ac tbp -1.1e-06
4 14768704 14769257 554 * peaks PU1 microglia microglia H3K27ac exvivo H3K27ac tbp -1.1e-06
4 14771450 14773099 1650 * peaks LHX2 astrocytes microglia H3K27ac exvivo H3K27ac tbp -1.1e-06
4 14829018 14829146 129 * peaks NeuN neurons microglia H3K27ac exvivo H3K27ac tbp -1.1e-06

Corces2020

echoannot also includes data generated by “Corces2019”:

Corces, M.R., Shcherbina, A., Kundu, S. et al. Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases. Nat Genet 52, 1158–1168 (2020). https://doi.org/10.1038/s41588-020-00721-x

Import data

bulkATACseq_peaks <- echoannot::get_CORCES2020_bulkATACseq_peaks()
cicero_coaccessibility <- echoannot::get_CORCES2020_cicero_coaccessibility()
hichip_fithichip_loop_calls <- echoannot::get_CORCES2020_hichip_fithichip_loop_calls()
scATACseq_celltype_peaks <- echoannot::get_CORCES2020_scATACseq_celltype_peaks()
scATACseq_peaks <- echoannot::get_CORCES2020_scATACseq_peaks()

Plot

peak_dat <- echoannot::granges_overlap(
    dat1 = dat,  
    chrom_col.1 = "CHR",
    start_col.1 = "POS",
    dat2 = scATACseq_celltype_peaks, 
    chrom_col.2 = "hg38_Chromosome",
    start_col.2 = "hg38_Start",
    end_col.2 = "hg38_Stop")
ggbio::autoplot(peak_dat, 
                ggplot2::aes(y=ExcitatoryNeurons, color=Effect)) 

Session Info

utils::sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] echoannot_0.99.10 BiocStyle_2.25.0 
## 
## loaded via a namespace (and not attached):
##   [1] utf8_1.2.2                  reticulate_1.26            
##   [3] R.utils_2.12.0              tidyselect_1.2.0           
##   [5] RSQLite_2.2.18              AnnotationDbi_1.59.1       
##   [7] htmlwidgets_1.5.4           grid_4.2.1                 
##   [9] BiocParallel_1.31.15        XGR_1.1.8                  
##  [11] munsell_0.5.0               codetools_0.2-18           
##  [13] ragg_1.2.4                  interp_1.1-3               
##  [15] DT_0.26                     colorspace_2.0-3           
##  [17] OrganismDbi_1.39.1          Biobase_2.57.3             
##  [19] filelock_1.0.2              highr_0.9                  
##  [21] knitr_1.40                  supraHex_1.35.0            
##  [23] rstudioapi_0.14             stats4_4.2.1               
##  [25] DescTools_0.99.47           labeling_0.4.2             
##  [27] MatrixGenerics_1.9.1        GenomeInfoDbData_1.2.9     
##  [29] farver_2.1.1                bit64_4.0.5                
##  [31] echoconda_0.99.7            rprojroot_2.0.3            
##  [33] basilisk_1.9.12             vctrs_0.5.0                
##  [35] generics_0.1.3              xfun_0.34                  
##  [37] biovizBase_1.45.0           BiocFileCache_2.5.2        
##  [39] R6_2.5.1                    GenomeInfoDb_1.33.16       
##  [41] AnnotationFilter_1.21.0     bitops_1.0-7               
##  [43] cachem_1.0.6                reshape_0.8.9              
##  [45] DelayedArray_0.23.2         assertthat_0.2.1           
##  [47] BiocIO_1.7.1                scales_1.2.1               
##  [49] nnet_7.3-18                 rootSolve_1.8.2.3          
##  [51] gtable_0.3.1                lmom_2.9                   
##  [53] ggbio_1.45.0                ensembldb_2.21.5           
##  [55] rlang_1.0.6                 systemfonts_1.0.4          
##  [57] echodata_0.99.15            splines_4.2.1              
##  [59] lazyeval_0.2.2              rtracklayer_1.57.0         
##  [61] dichromat_2.0-0.1           hexbin_1.28.2              
##  [63] checkmate_2.1.0             BiocManager_1.30.19        
##  [65] yaml_2.3.6                  reshape2_1.4.4             
##  [67] backports_1.4.1             GenomicFeatures_1.49.8     
##  [69] ggnetwork_0.5.10            Hmisc_4.7-1                
##  [71] RBGL_1.73.0                 tools_4.2.1                
##  [73] bookdown_0.29               ggplot2_3.3.6              
##  [75] ellipsis_0.3.2              jquerylib_0.1.4            
##  [77] RColorBrewer_1.1-3          proxy_0.4-27               
##  [79] BiocGenerics_0.43.4         Rcpp_1.0.9                 
##  [81] plyr_1.8.7                  base64enc_0.1-3            
##  [83] progress_1.2.2              zlibbioc_1.43.0            
##  [85] purrr_0.3.5                 RCurl_1.98-1.9             
##  [87] basilisk.utils_1.9.4        prettyunits_1.1.1          
##  [89] rpart_4.1.16                deldir_1.0-6               
##  [91] S4Vectors_0.35.4            cluster_2.1.4              
##  [93] SummarizedExperiment_1.27.3 ggrepel_0.9.1              
##  [95] fs_1.5.2                    crul_1.3                   
##  [97] magrittr_2.0.3              data.table_1.14.4          
##  [99] echotabix_0.99.8            dnet_1.1.7                 
## [101] openxlsx_4.2.5.1            mvtnorm_1.1-3              
## [103] ProtGenerics_1.29.1         matrixStats_0.62.0         
## [105] patchwork_1.1.2             hms_1.1.2                  
## [107] evaluate_0.17               XML_3.99-0.11              
## [109] jpeg_0.1-9                  readxl_1.4.1               
## [111] IRanges_2.31.2              gridExtra_2.3              
## [113] compiler_4.2.1              biomaRt_2.53.3             
## [115] tibble_3.1.8                crayon_1.5.2               
## [117] R.oo_1.25.0                 htmltools_0.5.3            
## [119] tzdb_0.3.0                  Formula_1.2-4              
## [121] tidyr_1.2.1                 expm_0.999-6               
## [123] Exact_3.2                   DBI_1.1.3                  
## [125] dbplyr_2.2.1                MASS_7.3-58.1              
## [127] rappdirs_0.3.3              boot_1.3-28                
## [129] Matrix_1.5-1                readr_2.1.3                
## [131] piggyback_0.1.4             cli_3.4.1                  
## [133] R.methodsS3_1.8.2           parallel_4.2.1             
## [135] igraph_1.3.5                GenomicRanges_1.49.1       
## [137] pkgconfig_2.0.3             pkgdown_2.0.6.9000         
## [139] GenomicAlignments_1.33.1    dir.expiry_1.5.1           
## [141] RCircos_1.2.2               foreign_0.8-83             
## [143] osfr_0.2.9                  xml2_1.3.3                 
## [145] bslib_0.4.0                 XVector_0.37.1             
## [147] stringr_1.4.1               VariantAnnotation_1.43.3   
## [149] digest_0.6.30               graph_1.75.1               
## [151] httpcode_0.3.0              Biostrings_2.65.6          
## [153] rmarkdown_2.17              cellranger_1.1.0           
## [155] htmlTable_2.4.1             gld_2.6.6                  
## [157] restfulr_0.0.15             curl_4.3.3                 
## [159] Rsamtools_2.13.4            rjson_0.2.21               
## [161] lifecycle_1.0.3             nlme_3.1-160               
## [163] jsonlite_1.8.3              viridisLite_0.4.1          
## [165] desc_1.4.2                  BSgenome_1.65.4            
## [167] fansi_1.0.3                 downloadR_0.99.5           
## [169] pillar_1.8.1                lattice_0.20-45            
## [171] GGally_2.1.2                KEGGREST_1.37.3            
## [173] fastmap_1.1.0               httr_1.4.4                 
## [175] survival_3.4-0              glue_1.6.2                 
## [177] zip_2.2.2                   png_0.1-7                  
## [179] bit_4.0.4                   Rgraphviz_2.41.2           
## [181] class_7.3-20                stringi_1.7.8              
## [183] sass_0.4.2                  blob_1.2.3                 
## [185] textshaping_0.3.6           latticeExtra_0.6-30        
## [187] memoise_2.0.1               dplyr_1.0.10               
## [189] e1071_1.7-12                ape_5.6-2