Runs colocalization tests (coloc::coloc.abf
) on merged GWAS-QTL datatables
generated by catalogueR::eQTL_Catalogue.query
.
run_coloc( gwas.qtl_paths, save_path = "./coloc_results.tsv.gz", nThread = 4, top_snp_only = T, split_by_group = F, method = "abf", PP_threshold = 0.8 )
If top_snp_only=T
, returns SNP-level stats for only the SNP
with the highest colocalization probability (SNP.PP.H4)
If top_snp_only=T
, returns SNP-level stats for every SNP.
In either case, summary-level coloc stats are added in the columns
PP.H0, PP.H1, PP.H2, PP.H3, PP.H4.
Iterately runs coloc across each:
QTL dataset
GWAS locus
QTL gene
Other coloc:
COLOC.report_summary()
,
coloc_QTLs_full
,
coloc_QTLs
,
gather_colocalized_data()
,
get_colocs()
,
plot_coloc_summary()
,
retrieve_sumstats_info()
# With built-in data gwas.qtl_paths <- example_eQTL_Catalogue_query_paths() coloc_QTLs <- run_coloc(gwas.qtl_paths=gwas.qtl_paths, nThread=4, top_snp_only=T, save_path="~/Desktop/coloc_results.tsv.gz")#>#>#>#>#>#>if (FALSE) { # With full Nalls et al data (not included) gwas.qtl_paths <- list.files("/pd-omics/brian/eQTL_catalogue/Nalls23andMe_2019", recursive=T, full.names = T) coloc_QTLs.Nalls2019 <- run_coloc(gwas.qtl_paths=gwas.qtl_paths[1:100], nThread=4, top_snp_only=T, save_path="~/Desktop/Nall2019.coloc_results.tsv.gz") }