vignettes/finemapping_portal.Rmd
      finemapping_portal.Rmd## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2## ⠊⠉⠡⣀⣀⠊⠉⠡⣀⣀⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠                                    
## ⠌⢁⡐⠉⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠉⢂⡈⠑⣀⠉⢄⡈⠡⣀                                    
## ⠌⡈⡐⢂⢁⠒⡈⡐⢂⢁⠒⡈⡐⢂⢁⠑⡈⡈⢄⢁⠡⠌⡈⠤⢁⠡⠌⡈⠤⢁⠡⠌⡈⡠⢁⢁⠊⡈⡐⢂## ## ── 🦇  🦇  🦇 e c h o l o c a t o R 🦇  🦇  🦇 ─────────────────────────────────## ## ── v2.0.3 ──────────────────────────────────────────────────────────────────────## ⠌⡈⡐⢂⢁⠒⡈⡐⢂⢁⠒⡈⡐⢂⢁⠑⡈⡈⢄⢁⠡⠌⡈⠤⢁⠡⠌⡈⠤⢁⠡⠌⡈⡠⢁⢁⠊⡈⡐⢂                                    
## ⠌⢁⡐⠉⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠉⢂⡈⠑⣀⠉⢄⡈⠡⣀                                    
## ⠊⠉⠡⣀⣀⠊⠉⠡⣀⣀⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠                                    
## ⓞ If you use echolocatoR or any of the echoverse subpackages, please cite:      
##      ▶ Brian M Schilder, Jack Humphrey, Towfique                                
##      Raj (2021) echolocatoR: an automated                                       
##      end-to-end statistical and functional                                      
##      genomic fine-mapping pipeline,                                             
##      Bioinformatics; btab658,                                                   
##      https://doi.org/10.1093/bioinformatics/btab658                             
## ⓞ Please report any bugs/feature requests on GitHub:
##      ▶
##      https://github.com/RajLabMSSM/echolocatoR/issues
## ⓞ Contributions are welcome!:
##      ▶
##      https://github.com/RajLabMSSM/echolocatoR/pulls## ## ────────────────────────────────────────────────────────────────────────────────Here we take advantage of the fine-mapping results files already available on the echolocatoR Fine-mapping Portal.
## Limit the number of loci for demo purposes
loci <- echodata::topSNPs_Nalls2019$Locus[1:3] We can query multiple studies, loci, and even data types at once.
When as_datatable=TRUE, all file paths and metadata are
conveniently organized into a data.table.
results_dir <- tempdir()
local_files <- echodata::portal_query(dataset_types="GWAS",
                                      phenotypes = c("parkinson"),
                                      file_types = c("multi_finemap","LD"), 
                                      loci = loci,
                                      LD_panels=c("UKB"),
                                      results_dir = results_dir, 
                                      as_datatable = TRUE) ## Fetching echolocatoR Fine-mapping Portal study metadata.## + 1 dataset(s) remain after filtering.## + Searching for multi_finemap files...## OK (HTTP 200).+ Searching for LD files...
## OK (HTTP 200).+ 6 unique files identified.
## + Downloading 4 files...
## + Returning table with local file paths.Next, we can gather all of the fine-mapping results generated by
finemap_loci() previously.merge_finemapping_results recursively searches for the
correct files within a hierarchical folder structure and imports only
the multi-finemap files.
merged_DT <- echodata::merge_finemapping_results(dataset = results_dir,   
                                                 minimum_support = 0,
                                                 include_leadSNPs = TRUE,
                                                 consensus_thresh = 2)## + Gathering all fine-mapping results from storage...## + 2 multi-finemap files found.## + Importing results... ASXL3## + Importing results... BIN3## Identifying Consensus SNPs...## + support_thresh = 2## + Calculating mean Posterior Probability (mean.PP)...## + 4 fine-mapping methods used.## + 17 Credible Set SNPs identified.## + 6 Consensus SNPs identified.## + Saving merged results ==> /tmp/RtmpJQtSZ8/file217973ffe623merged_results.csv.gz
echodata::results_report(merged_DT)## echolocatoR results report (all loci):## + Overall report:## ++ 2 Loci.## ++ 10605 SNPs.## + Lead SNP report:## ++ 2 lead SNPs.## ++ Lead SNP mean PP = 0.5## + Union Credible Set report:## ++ 17 UCS SNPs.## ++ UCS mean PP = 0.35## ++ 2 UCS SNPs that are also lead SNPs## + Consensus SNP report:## ++ 6 Consensus SNPs.## ++ Consensus SNP mean PP = 0.54## ++ 1 Consensus SNPs that are also lead SNPsNext, we import the a subset of the LD matrices for only the lead SNP.
ld_files <- local_files[file_type=="LD",]
ld_matrices <- lapply(stats::setNames(ld_files$local_file, 
                                      ld_files$locus),
                      function(x){
  data.table::fread(x)
}) 
knitr::kable(head(ld_matrices$ASXL3))| SNP | rs1941685 | rs1941685.1 | 
|---|---|---|
| rs12968480 | 0.0396723 | 0.0396723 | 
| rs12967667 | 0.0424208 | 0.0424208 | 
| rs9945156 | 0.0424096 | 0.0424096 | 
| rs1851700 | 0.0419115 | 0.0419115 | 
| rs117840441 | 0.0664300 | 0.0664300 | 
| rs1523592 | 0.0424137 | 0.0424137 | 
Now let’s plot one locus as an example.
locus <- unique(merged_DT$Locus)[1] # Pick the first locus
dat <- merged_DT[Locus==locus,] 
LD_matrix = ld_matrices[[locus]]
locus_dir <- file.path(tempdir(),locus)
plt <- echoplot::plot_locus(dat = dat,   
                    LD_matrix = LD_matrix,
                    LD_reference = "UKB",
                    locus_dir = locus_dir, 
                      
                    nott_epigenome = TRUE,   
                    nott_regulatory_rects = TRUE, 
                    nott_show_placseq = TRUE,
                    zoom = c("20x")) 
utils::sessionInfo()## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] echolocatoR_2.0.3 BiocStyle_2.26.0 
## 
## loaded via a namespace (and not attached):
##   [1] rappdirs_0.3.3              rtracklayer_1.58.0         
##   [3] GGally_2.1.2                R.methodsS3_1.8.2          
##   [5] ragg_1.2.4                  tidyr_1.2.1                
##   [7] echoLD_0.99.8               ggplot2_3.3.6              
##   [9] bit64_4.0.5                 knitr_1.40                 
##  [11] irlba_2.3.5.1               DelayedArray_0.24.0        
##  [13] R.utils_2.12.1              data.table_1.14.4          
##  [15] rpart_4.1.19                KEGGREST_1.38.0            
##  [17] RCurl_1.98-1.9              AnnotationFilter_1.22.0    
##  [19] generics_0.1.3              BiocGenerics_0.44.0        
##  [21] GenomicFeatures_1.50.2      RSQLite_2.2.18             
##  [23] proxy_0.4-27                bit_4.0.4                  
##  [25] tzdb_0.3.0                  xml2_1.3.3                 
##  [27] SummarizedExperiment_1.28.0 assertthat_0.2.1           
##  [29] viridis_0.6.2               xfun_0.34                  
##  [31] hms_1.1.2                   jquerylib_0.1.4            
##  [33] evaluate_0.17               fansi_1.0.3                
##  [35] restfulr_0.0.15             progress_1.2.2             
##  [37] dbplyr_2.2.1                readxl_1.4.1               
##  [39] Rgraphviz_2.41.2            igraph_1.3.5               
##  [41] DBI_1.1.3                   htmlwidgets_1.5.4          
##  [43] reshape_0.8.9               downloadR_0.99.5           
##  [45] stats4_4.2.1                purrr_0.3.5                
##  [47] ellipsis_0.3.2              dplyr_1.0.10               
##  [49] backports_1.4.1             bookdown_0.29              
##  [51] biomaRt_2.54.0              deldir_1.0-6               
##  [53] MatrixGenerics_1.10.0       vctrs_0.5.0                
##  [55] Biobase_2.58.0              ensembldb_2.22.0           
##  [57] cachem_1.0.6                withr_2.5.0                
##  [59] BSgenome_1.66.1             checkmate_2.1.0            
##  [61] GenomicAlignments_1.34.0    prettyunits_1.1.1          
##  [63] cluster_2.1.4               ape_5.6-2                  
##  [65] dir.expiry_1.5.1            lazyeval_0.2.2             
##  [67] crayon_1.5.2                basilisk.utils_1.9.4       
##  [69] crul_1.3                    pkgconfig_2.0.3            
##  [71] GenomeInfoDb_1.34.1         nlme_3.1-160               
##  [73] ProtGenerics_1.30.0         XGR_1.1.8                  
##  [75] nnet_7.3-18                 pals_1.7                   
##  [77] rlang_1.0.6                 lifecycle_1.0.3            
##  [79] filelock_1.0.2              httpcode_0.3.0             
##  [81] BiocFileCache_2.6.0         echotabix_0.99.8           
##  [83] dichromat_2.0-0.1           cellranger_1.1.0           
##  [85] coloc_5.1.0.1               rprojroot_2.0.3            
##  [87] matrixStats_0.62.0          graph_1.76.0               
##  [89] Matrix_1.5-1                osfr_0.2.9                 
##  [91] boot_1.3-28                 base64enc_0.1-3            
##  [93] png_0.1-7                   viridisLite_0.4.1          
##  [95] rjson_0.2.21                rootSolve_1.8.2.3          
##  [97] bitops_1.0-7                R.oo_1.25.0                
##  [99] ggnetwork_0.5.10            Biostrings_2.66.0          
## [101] blob_1.2.3                  mixsqp_0.3-43              
## [103] stringr_1.4.1               echoplot_0.99.5            
## [105] dnet_1.1.7                  readr_2.1.3                
## [107] jpeg_0.1-9                  S4Vectors_0.36.0           
## [109] echodata_0.99.15            scales_1.2.1               
## [111] memoise_2.0.1               magrittr_2.0.3             
## [113] plyr_1.8.7                  hexbin_1.28.2              
## [115] zlibbioc_1.44.0             compiler_4.2.1             
## [117] echoconda_0.99.8            BiocIO_1.8.0               
## [119] RColorBrewer_1.1-3          catalogueR_1.0.0           
## [121] Rsamtools_2.14.0            cli_3.4.1                  
## [123] XVector_0.38.0              echoannot_0.99.10          
## [125] patchwork_1.1.2             htmlTable_2.4.1            
## [127] Formula_1.2-4               MASS_7.3-58.1              
## [129] tidyselect_1.2.0            stringi_1.7.8              
## [131] textshaping_0.3.6           highr_0.9                  
## [133] yaml_2.3.6                  supraHex_1.35.0            
## [135] latticeExtra_0.6-30         ggrepel_0.9.1              
## [137] grid_4.2.1                  sass_0.4.2                 
## [139] VariantAnnotation_1.44.0    tools_4.2.1                
## [141] lmom_2.9                    parallel_4.2.1             
## [143] rstudioapi_0.14             foreign_0.8-83             
## [145] piggyback_0.1.4             gridExtra_2.3              
## [147] gld_2.6.6                   digest_0.6.30              
## [149] snpStats_1.47.1             BiocManager_1.30.19        
## [151] Rcpp_1.0.9                  GenomicRanges_1.50.0       
## [153] OrganismDbi_1.40.0          httr_1.4.4                 
## [155] AnnotationDbi_1.60.0        RCircos_1.2.2              
## [157] ggbio_1.46.0                biovizBase_1.46.0          
## [159] colorspace_2.0-3            XML_3.99-0.12              
## [161] fs_1.5.2                    reticulate_1.26            
## [163] IRanges_2.32.0              splines_4.2.1              
## [165] RBGL_1.74.0                 expm_0.999-6               
## [167] pkgdown_2.0.6               echofinemap_0.99.4         
## [169] basilisk_1.9.12             Exact_3.2                  
## [171] mapproj_1.2.9               systemfonts_1.0.4          
## [173] jsonlite_1.8.3              susieR_0.12.27             
## [175] R6_2.5.1                    Hmisc_4.7-1                
## [177] pillar_1.8.1                htmltools_0.5.3            
## [179] glue_1.6.2                  fastmap_1.1.0              
## [181] DT_0.26                     BiocParallel_1.32.0        
## [183] class_7.3-20                codetools_0.2-18           
## [185] maps_3.4.1                  mvtnorm_1.1-3              
## [187] utf8_1.2.2                  lattice_0.20-45            
## [189] bslib_0.4.0                 tibble_3.1.8               
## [191] curl_4.3.3                  DescTools_0.99.47          
## [193] zip_2.2.2                   openxlsx_4.2.5.1           
## [195] interp_1.1-3                survival_3.4-0             
## [197] rmarkdown_2.17              desc_1.4.2                 
## [199] munsell_0.5.0               e1071_1.7-12               
## [201] GenomeInfoDbData_1.2.9      reshape2_1.4.4             
## [203] gtable_0.3.1