## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
## ⠊⠉⠡⣀⣀⠊⠉⠡⣀⣀⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠                                    
## ⠌⢁⡐⠉⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠉⢂⡈⠑⣀⠉⢄⡈⠡⣀                                    
## ⠌⡈⡐⢂⢁⠒⡈⡐⢂⢁⠒⡈⡐⢂⢁⠑⡈⡈⢄⢁⠡⠌⡈⠤⢁⠡⠌⡈⠤⢁⠡⠌⡈⡠⢁⢁⠊⡈⡐⢂
## 
## ── 🦇  🦇  🦇 e c h o l o c a t o R 🦇  🦇  🦇 ─────────────────────────────────
## 
## ── v2.0.3 ──────────────────────────────────────────────────────────────────────
## ⠌⡈⡐⢂⢁⠒⡈⡐⢂⢁⠒⡈⡐⢂⢁⠑⡈⡈⢄⢁⠡⠌⡈⠤⢁⠡⠌⡈⠤⢁⠡⠌⡈⡠⢁⢁⠊⡈⡐⢂                                    
## ⠌⢁⡐⠉⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠉⢂⡈⠑⣀⠉⢄⡈⠡⣀                                    
## ⠊⠉⠡⣀⣀⠊⠉⠡⣀⣀⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠                                    
## ⓞ If you use echolocatoR or any of the echoverse subpackages, please cite:      
##      ▶ Brian M Schilder, Jack Humphrey, Towfique                                
##      Raj (2021) echolocatoR: an automated                                       
##      end-to-end statistical and functional                                      
##      genomic fine-mapping pipeline,                                             
##      Bioinformatics; btab658,                                                   
##      https://doi.org/10.1093/bioinformatics/btab658                             
## ⓞ Please report any bugs/feature requests on GitHub:
## 
##      https://github.com/RajLabMSSM/echolocatoR/issues
## ⓞ Contributions are welcome!:
## 
##      https://github.com/RajLabMSSM/echolocatoR/pulls
## 
## ────────────────────────────────────────────────────────────────────────────────

Download data

Summarise

Using pre-merged data for vignette speed.

merged_DT <- echodata::get_Nalls2019_merged()

get_SNPgroup_counts()

Get the number of SNPs for each SNP group per locus.
It also prints the mean number of SNPs for each SNP group across all loci.
NOTE: You will need to make sure to set merge_finemapping_results(minimum_support=1) in the above step to get accurate counts for all SNP groups.

snp_groups <- echodata::get_SNPgroup_counts(merged_DT = merged_DT)
## All loci (75) :
##            Total.SNPs          nom.sig.GWAS              sig.GWAS 
##               4948.16                924.68                 82.36 
##                    CS             Consensus          topConsensus 
##                  7.88                  2.69                  1.47 
## topConsensus.leadGWAS 
##                  0.41
## Loci with at least one Consensus SNP (69) :
##            Total.SNPs          nom.sig.GWAS              sig.GWAS 
##               5019.07                911.41                 84.28 
##                    CS             Consensus          topConsensus 
##                  7.77                  2.93                  1.59 
## topConsensus.leadGWAS 
##                  0.45

get_CS_counts()

County the number of tool-specific and UCS Credible Set SNPs per locus.

UCS_counts <- echodata::get_CS_counts(merged_DT = merged_DT)
knitr::kable(UCS_counts)
Locus ABF.CS_size SUSIE.CS_size POLYFUN_SUSIE.CS_size FINEMAP.CS_size mean.CS_size UCS.CS_size
GPNMB 0 4 5 5 0 13
MAP4K4 0 4 3 5 0 12
MBNL2 0 4 4 5 0 12
TMEM163 0 5 5 5 0 12
CRLS1 0 3 4 5 0 11
DNAH17 0 5 4 5 0 11
GBF1 0 5 5 5 0 11
GCH1 0 5 2 4 0 11
MIPOL1 0 2 4 5 0 11
FBRSL1 0 3 3 5 0 10
FYN 0 3 2 5 0 10
GALC 0 3 3 5 0 10
LCORL 0 4 3 5 0 10
LOC100131289 0 5 0 5 0 10
MED12L 0 4 4 5 0 10
SLC2A13 0 5 5 5 0 10
TRIM40 0 10 0 1 0 10
ATG14 0 5 5 5 0 9
CD19 0 5 5 5 0 9
CHRNB1 0 4 5 5 0 9
FAM49B 0 4 4 5 0 9
ITGA8 0 4 4 4 0 9
ITPKB 0 4 4 5 0 9
MCCC1 0 5 5 5 0 9
RPS6KL1 0 2 4 5 0 9
SH3GL2 0 3 3 5 0 9
STK39 0 5 5 5 0 9
TMEM175 1 4 4 5 0 9
C5orf24 0 4 4 5 0 8
CLCN3 0 5 4 5 0 8
CRHR1 0 5 5 5 0 8
CTSB 0 3 2 5 0 8
DLG2 0 3 3 5 0 8
DYRK1A 0 2 3 5 0 8
IGSF9B 0 4 4 5 0 8
IP6K2 0 4 5 4 0 8
NOD2 0 3 3 4 0 8
NUCKS1 0 5 5 5 0 8
RETREG3 0 4 4 5 0 8
RNF141 0 3 4 5 0 8
SIPA1L2 0 3 3 5 0 8
SP1 0 3 3 5 0 8
SPPL2B 0 4 3 4 0 8
WNT3 0 4 4 5 0 8
FCGR2A 0 3 3 5 0 7
GS1-124K5.11 0 2 2 5 0 7
HIP1R 1 3 3 5 1 7
KCNIP3 0 3 3 5 0 7
KPNA1 0 2 2 5 0 7
LINC00693 0 2 3 5 0 7
LRRK2 0 4 4 5 0 7
SETD1A 0 3 3 5 0 7
SNCA 0 4 4 5 0 7
SYT17 0 3 3 5 0 7
VAMP4 0 5 3 0 0 7
VPS13C 0 2 2 5 0 7
ELOVL7 0 2 2 4 0 6
FAM171A2 0 3 3 5 0 6
FGF20 0 2 2 5 0 6
HLA-DRB5 0 5 0 5 4 6
INPP5F 1 5 5 5 1 6
KRTCAP2 0 3 3 5 0 6
MEX3C 0 1 2 5 0 6
RIMS1 0 1 1 5 0 6
RIT2 0 2 2 5 1 6
RPS12 0 2 2 5 0 6
SCAF11 0 2 2 5 0 6
SPTSSB 0 2 2 5 0 6
UBAP2 0 2 2 5 0 6
KCNS3 0 5 4 0 0 5
CHD9 0 3 3 0 0 3
FAM47E-STBD1 0 3 3 0 0 3
PAM 0 2 3 0 0 3
SATB1 0 3 3 0 0 3
LMNB1 0 0 0 1 0 1

Plot

  • The following functions each return a list containing both the ...$plot and the ...$data used to make the plot.
  • Where available, snp_filter allows user to use any filtering argument (supplied as a string) to subset the data they want to use in the plot/data.

Colocalization results

If you ran colocalization tests with echolocatoR (via catalogueR) you can use those results to come up with a top QTL nominated gene for each locus (potentially implicating that gene in your phenotype).

coloc_res <- echodata::get_Nalls2019_coloc() 

Super summary plot

super_plot <- echoannot::super_summary_plot(merged_DT = merged_DT, 
                                            coloc_results = coloc_res,
                                            plot_missense = FALSE)
## + SUMMARISE:: Nominating genes by top colocalized eQTL eGenes
## Importing previously downloaded files: /github/home/.cache/R/echoannot/NOTT2019_epigenomic_peaks.rds
## ++ NOTT2019:: 634,540 ranges retrieved.
## Converting dat to GRanges object.
## 113 query SNP(s) detected with reference overlap.
## ++ NOTT2019:: Getting regulatory regions data.
## Importing Astrocyte enhancers ...
## Importing Astrocyte promoters ...
## Importing Neuronal enhancers ...
## Importing Neuronal promoters ...
## Importing Oligo enhancers ...
## Importing Oligo promoters ...
## Importing Microglia enhancers ...
## Importing Microglia promoters ...
## Converting dat to GRanges object.
## Converting dat to GRanges object.
## 48 query SNP(s) detected with reference overlap.
## ++ NOTT2019:: Getting interaction anchors data.
## Importing Microglia interactome ...
## Importing Neuronal interactome ...
## Importing Oligo interactome ...
## Converting dat to GRanges object.
## 52 query SNP(s) detected with reference overlap.
## Converting dat to GRanges object.
## 44 query SNP(s) detected with reference overlap.
## CORCES2020:: Extracting overlapping cell-type-specific scATAC-seq peaks
## Converting dat to GRanges object.
## 13 query SNP(s) detected with reference overlap.
## CORCES2020:: Annotating peaks by cell-type-specific target genes
## CORCES2020:: Extracting overlapping bulkATAC-seq peaks from brain tissue
## Converting dat to GRanges object.
## 4 query SNP(s) detected with reference overlap.
## CORCES2020:: Annotating peaks by bulk brain target genes
## Converting dat to GRanges object.
## 70 query SNP(s) detected with reference overlap.
## Converting dat to GRanges object.
## 72 query SNP(s) detected with reference overlap.
## + CORCES2020:: Found 142 hits with HiChIP_FitHiChIP coaccessibility loop anchors.
## Warning: The dot-dot notation (`..count..`) was deprecated in ggplot2 3.4.0.
##  Please use `after_stat(count)` instead.
##  The deprecated feature was likely used in the echoannot package.
##   Please report the issue at <https://github.com/RajLabMSSM/echoannot/issues>.
## Found more than one class "simpleUnit" in cache; using the first, from namespace 'hexbin'
## Also defined by 'ggbio'
## Warning: Removed 83 rows containing missing values (`position_stack()`).

Session info

utils::sessionInfo()
## R Under development (unstable) (2023-01-11 r83598)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.1 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: UTC
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] echolocatoR_2.0.3 BiocStyle_2.27.0 
## 
## loaded via a namespace (and not attached):
##   [1] ProtGenerics_1.31.0         fs_1.5.2                   
##   [3] matrixStats_0.63.0          bitops_1.0-7               
##   [5] httr_1.4.4                  RColorBrewer_1.1-3         
##   [7] Rgraphviz_2.43.0            tools_4.3.0                
##   [9] backports_1.4.1             utf8_1.2.2                 
##  [11] R6_2.5.1                    DT_0.27                    
##  [13] lazyeval_0.2.2              withr_2.5.0                
##  [15] prettyunits_1.1.1           GGally_2.1.2               
##  [17] gridExtra_2.3               cli_3.6.0                  
##  [19] Biobase_2.59.0              textshaping_0.3.6          
##  [21] labeling_0.4.2              ggbio_1.47.0               
##  [23] sass_0.4.4                  mvtnorm_1.1-3              
##  [25] readr_2.1.3                 proxy_0.4-27               
##  [27] pkgdown_2.0.7               mixsqp_0.3-48              
##  [29] Rsamtools_2.15.1            systemfonts_1.0.4          
##  [31] foreign_0.8-84              R.utils_2.12.2             
##  [33] dichromat_2.0-0.1           maps_3.4.1                 
##  [35] BSgenome_1.67.3             readxl_1.4.1               
##  [37] susieR_0.12.27              pals_1.7                   
##  [39] rstudioapi_0.14             RSQLite_2.2.20             
##  [41] httpcode_0.3.0              generics_0.1.3             
##  [43] BiocIO_1.9.1                echoconda_0.99.9           
##  [45] dplyr_1.0.10                zip_2.2.2                  
##  [47] Matrix_1.5-3                interp_1.1-3               
##  [49] fansi_1.0.3                 DescTools_0.99.47          
##  [51] S4Vectors_0.37.3            catalogueR_1.0.1           
##  [53] R.methodsS3_1.8.2           lifecycle_1.0.3            
##  [55] yaml_2.3.6                  SummarizedExperiment_1.29.1
##  [57] BiocFileCache_2.7.1         echoplot_0.99.6            
##  [59] grid_4.3.0                  blob_1.2.3                 
##  [61] crayon_1.5.2                dir.expiry_1.7.0           
##  [63] lattice_0.20-45             GenomicFeatures_1.51.2     
##  [65] mapproj_1.2.11              KEGGREST_1.39.0            
##  [67] pillar_1.8.1                knitr_1.41                 
##  [69] GenomicRanges_1.51.4        rjson_0.2.21               
##  [71] osfr_0.2.9                  boot_1.3-28.1              
##  [73] gld_2.6.6                   codetools_0.2-18           
##  [75] glue_1.6.2                  data.table_1.14.6          
##  [77] coloc_5.1.0.1               vctrs_0.5.1                
##  [79] png_0.1-8                   XGR_1.1.8                  
##  [81] cellranger_1.1.0            gtable_0.3.1               
##  [83] assertthat_0.2.1            cachem_1.0.6               
##  [85] dnet_1.1.7                  xfun_0.36                  
##  [87] openxlsx_4.2.5.1            survival_3.5-0             
##  [89] ellipsis_0.3.2              nlme_3.1-161               
##  [91] bit64_4.0.5                 progress_1.2.2             
##  [93] filelock_1.0.2              GenomeInfoDb_1.35.12       
##  [95] rprojroot_2.0.3             bslib_0.4.2                
##  [97] irlba_2.3.5.1               rpart_4.1.19               
##  [99] colorspace_2.0-3            BiocGenerics_0.45.0        
## [101] DBI_1.1.3                   Hmisc_4.7-2                
## [103] nnet_7.3-18                 Exact_3.2                  
## [105] tidyselect_1.2.0            bit_4.0.5                  
## [107] compiler_4.3.0              curl_5.0.0                 
## [109] graph_1.77.1                htmlTable_2.4.1            
## [111] expm_0.999-7                basilisk.utils_1.11.1      
## [113] xml2_1.3.3                  desc_1.4.2                 
## [115] DelayedArray_0.25.0         bookdown_0.32              
## [117] rtracklayer_1.59.1          checkmate_2.1.0            
## [119] scales_1.2.1                hexbin_1.28.2              
## [121] echoLD_0.99.9               RBGL_1.75.0                
## [123] RCircos_1.2.2               rappdirs_0.3.3             
## [125] stringr_1.5.0               supraHex_1.37.0            
## [127] digest_0.6.31               piggyback_0.1.4            
## [129] rmarkdown_2.20              basilisk_1.11.2            
## [131] XVector_0.39.0              htmltools_0.5.4            
## [133] pkgconfig_2.0.3             jpeg_0.1-10                
## [135] base64enc_0.1-3             MatrixGenerics_1.11.0      
## [137] echodata_0.99.16            highr_0.10                 
## [139] ensembldb_2.23.1            dbplyr_2.3.0               
## [141] fastmap_1.1.0               rlang_1.0.6                
## [143] htmlwidgets_1.6.1           farver_2.1.1               
## [145] echofinemap_0.99.5          jquerylib_0.1.4            
## [147] jsonlite_1.8.4              BiocParallel_1.33.9        
## [149] R.oo_1.25.0                 VariantAnnotation_1.45.0   
## [151] RCurl_1.98-1.9              magrittr_2.0.3             
## [153] Formula_1.2-4               GenomeInfoDbData_1.2.9     
## [155] ggnetwork_0.5.10            patchwork_1.1.2            
## [157] munsell_0.5.0               Rcpp_1.0.9                 
## [159] ggnewscale_0.4.8            ape_5.6-2                  
## [161] viridis_0.6.2               reticulate_1.27            
## [163] stringi_1.7.12              rootSolve_1.8.2.3          
## [165] zlibbioc_1.45.0             MASS_7.3-58.1              
## [167] plyr_1.8.8                  parallel_4.3.0             
## [169] ggrepel_0.9.2               snpStats_1.49.0            
## [171] lmom_2.9                    deldir_1.0-6               
## [173] echoannot_0.99.10           Biostrings_2.67.0          
## [175] splines_4.3.0               hms_1.1.2                  
## [177] igraph_1.3.5                reshape2_1.4.4             
## [179] biomaRt_2.55.0              stats4_4.3.0               
## [181] crul_1.3                    XML_3.99-0.13              
## [183] evaluate_0.20               latticeExtra_0.6-30        
## [185] biovizBase_1.47.0           BiocManager_1.30.19        
## [187] tzdb_0.3.0                  tidyr_1.2.1                
## [189] purrr_1.0.1                 reshape_0.8.9              
## [191] ggplot2_3.4.0               echotabix_0.99.9           
## [193] restfulr_0.0.15             AnnotationFilter_1.23.0    
## [195] e1071_1.7-12                downloadR_0.99.6           
## [197] viridisLite_0.4.1           class_7.3-20.1             
## [199] ragg_1.2.5                  OrganismDbi_1.41.0         
## [201] tibble_3.1.8                memoise_2.0.1              
## [203] AnnotationDbi_1.61.0        GenomicAlignments_1.35.0   
## [205] IRanges_2.33.0              cluster_2.1.4