vignettes/summarise.Rmd
summarise.Rmd
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
## ⠊⠉⠡⣀⣀⠊⠉⠡⣀⣀⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠
## ⠌⢁⡐⠉⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠉⢂⡈⠑⣀⠉⢄⡈⠡⣀
## ⠌⡈⡐⢂⢁⠒⡈⡐⢂⢁⠒⡈⡐⢂⢁⠑⡈⡈⢄⢁⠡⠌⡈⠤⢁⠡⠌⡈⠤⢁⠡⠌⡈⡠⢁⢁⠊⡈⡐⢂
##
## ── 🦇 🦇 🦇 e c h o l o c a t o R 🦇 🦇 🦇 ─────────────────────────────────
##
## ── v2.0.3 ──────────────────────────────────────────────────────────────────────
## ⠌⡈⡐⢂⢁⠒⡈⡐⢂⢁⠒⡈⡐⢂⢁⠑⡈⡈⢄⢁⠡⠌⡈⠤⢁⠡⠌⡈⠤⢁⠡⠌⡈⡠⢁⢁⠊⡈⡐⢂
## ⠌⢁⡐⠉⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠉⢂⡈⠑⣀⠉⢄⡈⠡⣀
## ⠊⠉⠡⣀⣀⠊⠉⠡⣀⣀⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠
## ⓞ If you use echolocatoR or any of the echoverse subpackages, please cite:
## ▶ Brian M Schilder, Jack Humphrey, Towfique
## Raj (2021) echolocatoR: an automated
## end-to-end statistical and functional
## genomic fine-mapping pipeline,
## Bioinformatics; btab658,
## https://doi.org/10.1093/bioinformatics/btab658
## ⓞ Please report any bugs/feature requests on GitHub:
## ▶
## https://github.com/RajLabMSSM/echolocatoR/issues
## ⓞ Contributions are welcome!:
## ▶
## https://github.com/RajLabMSSM/echolocatoR/pulls
##
## ────────────────────────────────────────────────────────────────────────────────
Using pre-merged data for vignette speed.
merged_DT <- echodata::get_Nalls2019_merged()
get_SNPgroup_counts()
Get the number of SNPs for each SNP group per locus.
It also prints the mean number of SNPs for each SNP group across all
loci.
NOTE: You will need to make sure to set
merge_finemapping_results(minimum_support=1)
in the above
step to get accurate counts for all SNP groups.
snp_groups <- echodata::get_SNPgroup_counts(merged_DT = merged_DT)
## All loci (75) :
## Total.SNPs nom.sig.GWAS sig.GWAS
## 4948.16 924.68 82.36
## CS Consensus topConsensus
## 7.88 2.69 1.47
## topConsensus.leadGWAS
## 0.41
## Loci with at least one Consensus SNP (69) :
## Total.SNPs nom.sig.GWAS sig.GWAS
## 5019.07 911.41 84.28
## CS Consensus topConsensus
## 7.77 2.93 1.59
## topConsensus.leadGWAS
## 0.45
get_CS_counts()
County the number of tool-specific and UCS Credible Set SNPs per locus.
UCS_counts <- echodata::get_CS_counts(merged_DT = merged_DT)
knitr::kable(UCS_counts)
Locus | ABF.CS_size | SUSIE.CS_size | POLYFUN_SUSIE.CS_size | FINEMAP.CS_size | mean.CS_size | UCS.CS_size |
---|---|---|---|---|---|---|
GPNMB | 0 | 4 | 5 | 5 | 0 | 13 |
MAP4K4 | 0 | 4 | 3 | 5 | 0 | 12 |
MBNL2 | 0 | 4 | 4 | 5 | 0 | 12 |
TMEM163 | 0 | 5 | 5 | 5 | 0 | 12 |
CRLS1 | 0 | 3 | 4 | 5 | 0 | 11 |
DNAH17 | 0 | 5 | 4 | 5 | 0 | 11 |
GBF1 | 0 | 5 | 5 | 5 | 0 | 11 |
GCH1 | 0 | 5 | 2 | 4 | 0 | 11 |
MIPOL1 | 0 | 2 | 4 | 5 | 0 | 11 |
FBRSL1 | 0 | 3 | 3 | 5 | 0 | 10 |
FYN | 0 | 3 | 2 | 5 | 0 | 10 |
GALC | 0 | 3 | 3 | 5 | 0 | 10 |
LCORL | 0 | 4 | 3 | 5 | 0 | 10 |
LOC100131289 | 0 | 5 | 0 | 5 | 0 | 10 |
MED12L | 0 | 4 | 4 | 5 | 0 | 10 |
SLC2A13 | 0 | 5 | 5 | 5 | 0 | 10 |
TRIM40 | 0 | 10 | 0 | 1 | 0 | 10 |
ATG14 | 0 | 5 | 5 | 5 | 0 | 9 |
CD19 | 0 | 5 | 5 | 5 | 0 | 9 |
CHRNB1 | 0 | 4 | 5 | 5 | 0 | 9 |
FAM49B | 0 | 4 | 4 | 5 | 0 | 9 |
ITGA8 | 0 | 4 | 4 | 4 | 0 | 9 |
ITPKB | 0 | 4 | 4 | 5 | 0 | 9 |
MCCC1 | 0 | 5 | 5 | 5 | 0 | 9 |
RPS6KL1 | 0 | 2 | 4 | 5 | 0 | 9 |
SH3GL2 | 0 | 3 | 3 | 5 | 0 | 9 |
STK39 | 0 | 5 | 5 | 5 | 0 | 9 |
TMEM175 | 1 | 4 | 4 | 5 | 0 | 9 |
C5orf24 | 0 | 4 | 4 | 5 | 0 | 8 |
CLCN3 | 0 | 5 | 4 | 5 | 0 | 8 |
CRHR1 | 0 | 5 | 5 | 5 | 0 | 8 |
CTSB | 0 | 3 | 2 | 5 | 0 | 8 |
DLG2 | 0 | 3 | 3 | 5 | 0 | 8 |
DYRK1A | 0 | 2 | 3 | 5 | 0 | 8 |
IGSF9B | 0 | 4 | 4 | 5 | 0 | 8 |
IP6K2 | 0 | 4 | 5 | 4 | 0 | 8 |
NOD2 | 0 | 3 | 3 | 4 | 0 | 8 |
NUCKS1 | 0 | 5 | 5 | 5 | 0 | 8 |
RETREG3 | 0 | 4 | 4 | 5 | 0 | 8 |
RNF141 | 0 | 3 | 4 | 5 | 0 | 8 |
SIPA1L2 | 0 | 3 | 3 | 5 | 0 | 8 |
SP1 | 0 | 3 | 3 | 5 | 0 | 8 |
SPPL2B | 0 | 4 | 3 | 4 | 0 | 8 |
WNT3 | 0 | 4 | 4 | 5 | 0 | 8 |
FCGR2A | 0 | 3 | 3 | 5 | 0 | 7 |
GS1-124K5.11 | 0 | 2 | 2 | 5 | 0 | 7 |
HIP1R | 1 | 3 | 3 | 5 | 1 | 7 |
KCNIP3 | 0 | 3 | 3 | 5 | 0 | 7 |
KPNA1 | 0 | 2 | 2 | 5 | 0 | 7 |
LINC00693 | 0 | 2 | 3 | 5 | 0 | 7 |
LRRK2 | 0 | 4 | 4 | 5 | 0 | 7 |
SETD1A | 0 | 3 | 3 | 5 | 0 | 7 |
SNCA | 0 | 4 | 4 | 5 | 0 | 7 |
SYT17 | 0 | 3 | 3 | 5 | 0 | 7 |
VAMP4 | 0 | 5 | 3 | 0 | 0 | 7 |
VPS13C | 0 | 2 | 2 | 5 | 0 | 7 |
ELOVL7 | 0 | 2 | 2 | 4 | 0 | 6 |
FAM171A2 | 0 | 3 | 3 | 5 | 0 | 6 |
FGF20 | 0 | 2 | 2 | 5 | 0 | 6 |
HLA-DRB5 | 0 | 5 | 0 | 5 | 4 | 6 |
INPP5F | 1 | 5 | 5 | 5 | 1 | 6 |
KRTCAP2 | 0 | 3 | 3 | 5 | 0 | 6 |
MEX3C | 0 | 1 | 2 | 5 | 0 | 6 |
RIMS1 | 0 | 1 | 1 | 5 | 0 | 6 |
RIT2 | 0 | 2 | 2 | 5 | 1 | 6 |
RPS12 | 0 | 2 | 2 | 5 | 0 | 6 |
SCAF11 | 0 | 2 | 2 | 5 | 0 | 6 |
SPTSSB | 0 | 2 | 2 | 5 | 0 | 6 |
UBAP2 | 0 | 2 | 2 | 5 | 0 | 6 |
KCNS3 | 0 | 5 | 4 | 0 | 0 | 5 |
CHD9 | 0 | 3 | 3 | 0 | 0 | 3 |
FAM47E-STBD1 | 0 | 3 | 3 | 0 | 0 | 3 |
PAM | 0 | 2 | 3 | 0 | 0 | 3 |
SATB1 | 0 | 3 | 3 | 0 | 0 | 3 |
LMNB1 | 0 | 0 | 0 | 1 | 0 | 1 |
...$plot
and the ...$data
used to make the
plot.snp_filter
allows user to use any
filtering argument (supplied as a string) to subset the data they want
to use in the plot/data.If you ran colocalization tests with echolocatoR
(via
catalogueR
) you can use those results to come up with a top
QTL nominated gene for each locus (potentially implicating that gene in
your phenotype).
coloc_res <- echodata::get_Nalls2019_coloc()
super_plot <- echoannot::super_summary_plot(merged_DT = merged_DT,
coloc_results = coloc_res,
plot_missense = FALSE)
## + SUMMARISE:: Nominating genes by top colocalized eQTL eGenes
## Importing previously downloaded files: /github/home/.cache/R/echoannot/NOTT2019_epigenomic_peaks.rds
## ++ NOTT2019:: 634,540 ranges retrieved.
## Converting dat to GRanges object.
## 113 query SNP(s) detected with reference overlap.
## ++ NOTT2019:: Getting regulatory regions data.
## Importing Astrocyte enhancers ...
## Importing Astrocyte promoters ...
## Importing Neuronal enhancers ...
## Importing Neuronal promoters ...
## Importing Oligo enhancers ...
## Importing Oligo promoters ...
## Importing Microglia enhancers ...
## Importing Microglia promoters ...
## Converting dat to GRanges object.
## Converting dat to GRanges object.
## 48 query SNP(s) detected with reference overlap.
## ++ NOTT2019:: Getting interaction anchors data.
## Importing Microglia interactome ...
## Importing Neuronal interactome ...
## Importing Oligo interactome ...
## Converting dat to GRanges object.
## 52 query SNP(s) detected with reference overlap.
## Converting dat to GRanges object.
## 44 query SNP(s) detected with reference overlap.
## CORCES2020:: Extracting overlapping cell-type-specific scATAC-seq peaks
## Converting dat to GRanges object.
## 13 query SNP(s) detected with reference overlap.
## CORCES2020:: Annotating peaks by cell-type-specific target genes
## CORCES2020:: Extracting overlapping bulkATAC-seq peaks from brain tissue
## Converting dat to GRanges object.
## 4 query SNP(s) detected with reference overlap.
## CORCES2020:: Annotating peaks by bulk brain target genes
## Converting dat to GRanges object.
## 70 query SNP(s) detected with reference overlap.
## Converting dat to GRanges object.
## 72 query SNP(s) detected with reference overlap.
## + CORCES2020:: Found 142 hits with HiChIP_FitHiChIP coaccessibility loop anchors.
## Warning: The dot-dot notation (`..count..`) was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(count)` instead.
## ℹ The deprecated feature was likely used in the echoannot package.
## Please report the issue at <https://github.com/RajLabMSSM/echoannot/issues>.
## Found more than one class "simpleUnit" in cache; using the first, from namespace 'hexbin'
## Also defined by 'ggbio'
## Warning: Removed 83 rows containing missing values (`position_stack()`).
utils::sessionInfo()
## R Under development (unstable) (2023-01-11 r83598)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] echolocatoR_2.0.3 BiocStyle_2.27.0
##
## loaded via a namespace (and not attached):
## [1] ProtGenerics_1.31.0 fs_1.5.2
## [3] matrixStats_0.63.0 bitops_1.0-7
## [5] httr_1.4.4 RColorBrewer_1.1-3
## [7] Rgraphviz_2.43.0 tools_4.3.0
## [9] backports_1.4.1 utf8_1.2.2
## [11] R6_2.5.1 DT_0.27
## [13] lazyeval_0.2.2 withr_2.5.0
## [15] prettyunits_1.1.1 GGally_2.1.2
## [17] gridExtra_2.3 cli_3.6.0
## [19] Biobase_2.59.0 textshaping_0.3.6
## [21] labeling_0.4.2 ggbio_1.47.0
## [23] sass_0.4.4 mvtnorm_1.1-3
## [25] readr_2.1.3 proxy_0.4-27
## [27] pkgdown_2.0.7 mixsqp_0.3-48
## [29] Rsamtools_2.15.1 systemfonts_1.0.4
## [31] foreign_0.8-84 R.utils_2.12.2
## [33] dichromat_2.0-0.1 maps_3.4.1
## [35] BSgenome_1.67.3 readxl_1.4.1
## [37] susieR_0.12.27 pals_1.7
## [39] rstudioapi_0.14 RSQLite_2.2.20
## [41] httpcode_0.3.0 generics_0.1.3
## [43] BiocIO_1.9.1 echoconda_0.99.9
## [45] dplyr_1.0.10 zip_2.2.2
## [47] Matrix_1.5-3 interp_1.1-3
## [49] fansi_1.0.3 DescTools_0.99.47
## [51] S4Vectors_0.37.3 catalogueR_1.0.1
## [53] R.methodsS3_1.8.2 lifecycle_1.0.3
## [55] yaml_2.3.6 SummarizedExperiment_1.29.1
## [57] BiocFileCache_2.7.1 echoplot_0.99.6
## [59] grid_4.3.0 blob_1.2.3
## [61] crayon_1.5.2 dir.expiry_1.7.0
## [63] lattice_0.20-45 GenomicFeatures_1.51.2
## [65] mapproj_1.2.11 KEGGREST_1.39.0
## [67] pillar_1.8.1 knitr_1.41
## [69] GenomicRanges_1.51.4 rjson_0.2.21
## [71] osfr_0.2.9 boot_1.3-28.1
## [73] gld_2.6.6 codetools_0.2-18
## [75] glue_1.6.2 data.table_1.14.6
## [77] coloc_5.1.0.1 vctrs_0.5.1
## [79] png_0.1-8 XGR_1.1.8
## [81] cellranger_1.1.0 gtable_0.3.1
## [83] assertthat_0.2.1 cachem_1.0.6
## [85] dnet_1.1.7 xfun_0.36
## [87] openxlsx_4.2.5.1 survival_3.5-0
## [89] ellipsis_0.3.2 nlme_3.1-161
## [91] bit64_4.0.5 progress_1.2.2
## [93] filelock_1.0.2 GenomeInfoDb_1.35.12
## [95] rprojroot_2.0.3 bslib_0.4.2
## [97] irlba_2.3.5.1 rpart_4.1.19
## [99] colorspace_2.0-3 BiocGenerics_0.45.0
## [101] DBI_1.1.3 Hmisc_4.7-2
## [103] nnet_7.3-18 Exact_3.2
## [105] tidyselect_1.2.0 bit_4.0.5
## [107] compiler_4.3.0 curl_5.0.0
## [109] graph_1.77.1 htmlTable_2.4.1
## [111] expm_0.999-7 basilisk.utils_1.11.1
## [113] xml2_1.3.3 desc_1.4.2
## [115] DelayedArray_0.25.0 bookdown_0.32
## [117] rtracklayer_1.59.1 checkmate_2.1.0
## [119] scales_1.2.1 hexbin_1.28.2
## [121] echoLD_0.99.9 RBGL_1.75.0
## [123] RCircos_1.2.2 rappdirs_0.3.3
## [125] stringr_1.5.0 supraHex_1.37.0
## [127] digest_0.6.31 piggyback_0.1.4
## [129] rmarkdown_2.20 basilisk_1.11.2
## [131] XVector_0.39.0 htmltools_0.5.4
## [133] pkgconfig_2.0.3 jpeg_0.1-10
## [135] base64enc_0.1-3 MatrixGenerics_1.11.0
## [137] echodata_0.99.16 highr_0.10
## [139] ensembldb_2.23.1 dbplyr_2.3.0
## [141] fastmap_1.1.0 rlang_1.0.6
## [143] htmlwidgets_1.6.1 farver_2.1.1
## [145] echofinemap_0.99.5 jquerylib_0.1.4
## [147] jsonlite_1.8.4 BiocParallel_1.33.9
## [149] R.oo_1.25.0 VariantAnnotation_1.45.0
## [151] RCurl_1.98-1.9 magrittr_2.0.3
## [153] Formula_1.2-4 GenomeInfoDbData_1.2.9
## [155] ggnetwork_0.5.10 patchwork_1.1.2
## [157] munsell_0.5.0 Rcpp_1.0.9
## [159] ggnewscale_0.4.8 ape_5.6-2
## [161] viridis_0.6.2 reticulate_1.27
## [163] stringi_1.7.12 rootSolve_1.8.2.3
## [165] zlibbioc_1.45.0 MASS_7.3-58.1
## [167] plyr_1.8.8 parallel_4.3.0
## [169] ggrepel_0.9.2 snpStats_1.49.0
## [171] lmom_2.9 deldir_1.0-6
## [173] echoannot_0.99.10 Biostrings_2.67.0
## [175] splines_4.3.0 hms_1.1.2
## [177] igraph_1.3.5 reshape2_1.4.4
## [179] biomaRt_2.55.0 stats4_4.3.0
## [181] crul_1.3 XML_3.99-0.13
## [183] evaluate_0.20 latticeExtra_0.6-30
## [185] biovizBase_1.47.0 BiocManager_1.30.19
## [187] tzdb_0.3.0 tidyr_1.2.1
## [189] purrr_1.0.1 reshape_0.8.9
## [191] ggplot2_3.4.0 echotabix_0.99.9
## [193] restfulr_0.0.15 AnnotationFilter_1.23.0
## [195] e1071_1.7-12 downloadR_0.99.6
## [197] viridisLite_0.4.1 class_7.3-20.1
## [199] ragg_1.2.5 OrganismDbi_1.41.0
## [201] tibble_3.1.8 memoise_2.0.1
## [203] AnnotationDbi_1.61.0 GenomicAlignments_1.35.0
## [205] IRanges_2.33.0 cluster_2.1.4