## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
## ⠊⠉⠡⣀⣀⠊⠉⠡⣀⣀⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠                                    
## ⠌⢁⡐⠉⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠉⢂⡈⠑⣀⠉⢄⡈⠡⣀                                    
## ⠌⡈⡐⢂⢁⠒⡈⡐⢂⢁⠒⡈⡐⢂⢁⠑⡈⡈⢄⢁⠡⠌⡈⠤⢁⠡⠌⡈⠤⢁⠡⠌⡈⡠⢁⢁⠊⡈⡐⢂
## 
## ── 🦇  🦇  🦇 e c h o l o c a t o R 🦇  🦇  🦇 ─────────────────────────────────
## 
## ── v2.0.3 ──────────────────────────────────────────────────────────────────────
## ⠌⡈⡐⢂⢁⠒⡈⡐⢂⢁⠒⡈⡐⢂⢁⠑⡈⡈⢄⢁⠡⠌⡈⠤⢁⠡⠌⡈⠤⢁⠡⠌⡈⡠⢁⢁⠊⡈⡐⢂                                    
## ⠌⢁⡐⠉⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠉⢂⡈⠑⣀⠉⢄⡈⠡⣀                                    
## ⠊⠉⠡⣀⣀⠊⠉⠡⣀⣀⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠                                    
## ⓞ If you use echolocatoR or any of the echoverse subpackages, please cite:      
##      ▶ Brian M Schilder, Jack Humphrey, Towfique                                
##      Raj (2021) echolocatoR: an automated                                       
##      end-to-end statistical and functional                                      
##      genomic fine-mapping pipeline,                                             
##      Bioinformatics; btab658,                                                   
##      https://doi.org/10.1093/bioinformatics/btab658                             
## ⓞ Please report any bugs/feature requests on GitHub:
## 
##      https://github.com/RajLabMSSM/echolocatoR/issues
## ⓞ Contributions are welcome!:
## 
##      https://github.com/RajLabMSSM/echolocatoR/pulls
## 
## ────────────────────────────────────────────────────────────────────────────────

Plotting loci with echolocatoR

echolocatoR contains various functions that can be used separately
from the comprehensive finemap_loci() pipeline.

Generate a multi-view plot of a given locus using echoplot::plot_locus().

  • You can mix and match different tracks and annotations using the different arguments (see ?echoplot::plot_locus for details).

The plot is centered on the lead/index SNP. If a list is supplied to plot.xoom * echoplot::plot_locus() returns a series of ggplot objects bound together with patchwork. One can further modify this object using ggplot2 functions like + theme(). + The modifications will be applied to all tracks at once.

  • Save a high-resolution versions the plot by setting save_plot=T.
    • Further increase resolution by adjusting the dpi argument (default=300).
    • Files are saved in jpg format by default, but users can specify their preferred file format (e.g. file_format="png")
    • Adjust the height and width of the saved plot using these respective arguments.
    • The plot will be automatically saved in the locus-specific directory as:
      *multiview__<plot.zoom>.jpg*.

Load example data

Load example dataset of the results from fine-mapping the BST1 locus with finemap_loci(). Original data comes from the recent Nalls et al. (2019) Parkinson’s disease GWAS (see ?BST1 for details).

dat <- echodata::BST1
LD_matrix <- echodata::BST1_LD_matrix
locus_dir <- file.path(tempdir(), echodata::locus_dir)
LD_reference <- "UKB" # Used for naming saved plots 

Full window

trk_plot <- echoplot::plot_locus(dat = dat, 
                                 LD_matrix = LD_matrix, 
                                 LD_reference = LD_reference,
                                 locus_dir = locus_dir,
                                 zoom = "10x") 
## +-------- Locus Plot:  BST1 --------+
## + support_thresh = 2
## + Calculating mean Posterior Probability (mean.PP)...
## + 4 fine-mapping methods used.
## + 7 Credible Set SNPs identified.
## + 3 Consensus SNPs identified.
## + Filling NAs in CS cols with 0.
## + Filling NAs in PP cols with 0.
## LD_matrix detected. Coloring SNPs by LD with lead SNP.
## Filling r/r2 NAs with 0
## ++ echoplot:: GWAS full window track
## ++ echoplot:: GWAS track
## ++ echoplot:: Merged fine-mapping track
## Melting PP and CS from 5 fine-mapping methods.
## ++ echoplot:: Adding Gene model track.
## Converting dat to GRanges object.
## Loading required namespace: EnsDb.Hsapiens.v75
## max_transcripts= 1 .
## 16  transcripts from  16  genes returned.
## Fetching data...OK
## Parsing exons...OK
## Defining introns...OK
## Defining UTRs...OK
## Defining CDS...OK
## aggregating...
## Done
## Constructing graphics...
## + Adding vertical lines to highlight SNP groups...
## +>+>+>+>+ zoom =  10x  +<+<+<+<+
## + echoplot:: Get window suffix...
## + Constructing zoom polygon...
## + Highlighting zoom origin...
## + Removing subplot margins...
## + Reordering tracks...
## [1] "+ Ensuring last track shows genomic units..."
## + Aligning xlimits for each subplot...
## + Checking track heights...
## Found more than one class "simpleUnit" in cache; using the first, from namespace 'hexbin'
## Also defined by 'ggbio'

At multiple zooms

  • You can easily generate the same locus plot at multiple zoomed in views by supplying a list to plot.zoom.
  • This list can be composed of zoom multipliers (e.g. c("1x", "2x")), window widths in units of basepairs (e.g. c(5000, 1500)), or a mixture of both (e.g. c("1x","4x", 5000, 2000)).
  • Each zoom view will be saved individually with its respective scale as the suffix (e.g. multiview.BST1.UKB.4x.jpg).
  • Each zoom view is stored as a named item within the returned list.
trk_plot_zooms <- echoplot::plot_locus(dat = dat, 
                                       LD_matrix = LD_matrix, 
                                       LD_reference = LD_reference,
                                       locus_dir = locus_dir,
                                       zoom = c("1x","5x","10x")) 
names(trk_plot_zooms) # Get zoom view names

Return as list

  • For even further control over each track of the multi-view plot, specify echoplot::plot_locus(..., return_list=T) to instead return a named list (nested within each zoom view list item) of ggplot objects which can each be modified individually.
  • Once you’ve made your modifications, you can then bind this list of plots back together with patchwork::wrap_plots(tracks_list, ncol = 1).
trk_plot_list <- echoplot::plot_locus(dat = dat, 
                                      LD_matrix = LD_matrix, 
                                      LD_reference = LD_reference,
                                      locus_dir = locus_dir,
                                      zoom = "10x",
                                      show_plot = FALSE,
                                      return_list = TRUE)  
## +-------- Locus Plot:  BST1 --------+
## + support_thresh = 2
## + Calculating mean Posterior Probability (mean.PP)...
## + 4 fine-mapping methods used.
## + 7 Credible Set SNPs identified.
## + 3 Consensus SNPs identified.
## + Filling NAs in CS cols with 0.
## + Filling NAs in PP cols with 0.
## LD_matrix detected. Coloring SNPs by LD with lead SNP.
## Filling r/r2 NAs with 0
## ++ echoplot:: GWAS full window track
## ++ echoplot:: GWAS track
## ++ echoplot:: Merged fine-mapping track
## Melting PP and CS from 5 fine-mapping methods.
## ++ echoplot:: Adding Gene model track.
## Converting dat to GRanges object.
## max_transcripts= 1 .
## 16  transcripts from  16  genes returned.
## Fetching data...OK
## Parsing exons...OK
## Defining introns...OK
## Defining UTRs...OK
## Defining CDS...OK
## aggregating...
## Done
## Constructing graphics...
## + Adding vertical lines to highlight SNP groups...
## +>+>+>+>+ zoom =  10x  +<+<+<+<+
## + echoplot:: Get window suffix...
## + Constructing zoom polygon...
## + Highlighting zoom origin...
## + Removing subplot margins...
## + Reordering tracks...
## [1] "+ Ensuring last track shows genomic units..."
## + Aligning xlimits for each subplot...
## + Checking track heights...
view1_list <- trk_plot_list[["10x"]]
names(view1_list) # Get track names from a particular zoom view
## [1] "GWAS full window" "zoom_polygon"     "Genes"            "GWAS"            
## [5] "Fine-mapping"

Modify a specific tracks within a view.

library(ggplot2)
library(patchwork)
# Modify your selected track
modified_track <- view1_list$GWAS + 
    ggplot2::labs(title = "Modified GWAS") +  
    ggplot2::scale_color_gradient2(low = "purple", 
                                   mid = "magenta",
                                   high = "white",
                                   midpoint = .5) +
    ggplot2::theme(title = ggplot2::element_text(hjust = .5),
                   panel.background = ggplot2::element_rect(fill = "black"))
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
# Put it back into your track list
view1_list[["GWAS"]] <- modified_track
# Remove a plot you don't want
view1_list[["Genes"]] <- NULL
# Specify the relative heights of each track (make sure it matches your new # of plots!)
track_heights <- c(.3,.1,.3,1)
# Bind them back together and plot
fused_plot <- patchwork::wrap_plots(view1_list, 
                                    heights = track_heights,
                                    ncol = 1)
print(fused_plot)

Using XGR annotations

  • Whenever you use annotation arguments (e.g. xgr_libnames,roadmap,nott_epigenome) the annotations that overlap with your locus will automatically be saved as GRanges objects in a locus-specific subdirectory:
    results////annotation
  • If a selected annotation has previously been downloaded and stored for that locus, echoplot::plot_locus() will automatically detect and import it to save time.
trk_plot.xgr <- echoplot::plot_locus(dat = dat, 
                                     LD_matrix = LD_matrix, 
                                     LD_reference = LD_reference,
                                     locus_dir = locus_dir,  
                                     xgr_libnames = c("ENCODE_TFBS_ClusteredV3_CellTypes"), 
                                     zoom = "10x")
## +-------- Locus Plot:  BST1 --------+
## + support_thresh = 2
## + Calculating mean Posterior Probability (mean.PP)...
## + 4 fine-mapping methods used.
## + 7 Credible Set SNPs identified.
## + 3 Consensus SNPs identified.
## + Filling NAs in CS cols with 0.
## + Filling NAs in PP cols with 0.
## LD_matrix detected. Coloring SNPs by LD with lead SNP.
## Filling r/r2 NAs with 0
## ++ echoplot:: GWAS full window track
## ++ echoplot:: GWAS track
## ++ echoplot:: Merged fine-mapping track
## Melting PP and CS from 5 fine-mapping methods.
## ++ echoplot:: Adding Gene model track.
## Converting dat to GRanges object.
## max_transcripts= 1 .
## 16  transcripts from  16  genes returned.
## Fetching data...OK
## Parsing exons...OK
## Defining introns...OK
## Defining UTRs...OK
## Defining CDS...OK
## aggregating...
## Done
## Constructing graphics...
## echoannot:: Plotting XGR annotations.
## Start at 2022-11-07 13:34:39
## 
## 'ENCODE_TFBS_ClusteredV3_CellTypes' (from http://galahad.well.ox.ac.uk/bigdata/ENCODE_TFBS_ClusteredV3_CellTypes.RData) has been loaded into the working environment (at 2022-11-07 13:34:47)
## 
## End at 2022-11-07 13:34:47
## Runtime in total is: 8 secs
## 
## Converting dat to GRanges object.
## 1,579 query SNP(s) detected with reference overlap.
## Warning: Ignoring unknown parameters: facets
## Warning in max(xlim): no non-missing arguments to max; returning -Inf
## + Adding vertical lines to highlight SNP groups...
## Warning: Groups with fewer than two data points have been dropped.
## Warning: Groups with fewer than two data points have been dropped.
## Warning: Removed 2 rows containing missing values (position_stack).
## +>+>+>+>+ zoom =  10x  +<+<+<+<+
## + echoplot:: Get window suffix...
## + Constructing zoom polygon...
## + Highlighting zoom origin...
## + Removing subplot margins...
## + Reordering tracks...
## [1] "+ Ensuring last track shows genomic units..."
## Warning: Groups with fewer than two data points have been dropped.
## Warning: Groups with fewer than two data points have been dropped.
## Warning: Removed 2 rows containing missing values (position_stack).
## + Aligning xlimits for each subplot...
## Warning: Groups with fewer than two data points have been dropped.
## Warning: Groups with fewer than two data points have been dropped.
## Warning: Removed 2 rows containing missing values (position_stack).
## + Checking track heights...
## Warning: Groups with fewer than two data points have been dropped.
## Warning: Groups with fewer than two data points have been dropped.
## Warning: Removed 2 rows containing missing values (position_stack).
## Error : Unknown colour name: NULL

Using Roadmap annotations

  • Using the Roadmap=T and Roadmap_query="<query>" arguments searches the Roadmap for chromatin mark data across various cell-types, cell-lines and tissues.
  • Note that Roadmap queries requires tabix to be installed on your machine, or within a conda environment (conda_env = "echoR").
  • Parallelizing these queries across multiple threads speeds up this process (nThread=<n_cores_available>), as does reusing previously stored data which is automatically saved to the locus-specific subfolder (<dataset_type>/<dataset_name>/<locus>/annotations/Roadmap.ChromatinMarks_CellTypes.RDS).
trk_plot.roadmap <- echoplot::plot_locus(dat = dat, 
                                         LD_matrix = LD_matrix, 
                                         LD_reference = LD_reference,
                                         locus_dir = locus_dir,
                                         zoom = "5x",
                                         
                                         roadmap = TRUE, 
                                         roadmap_query = "monocyte")

Using Nott_2019 annotations

trk_plot.nott_2019 <- echoplot::plot_locus(dat = dat,  
                                 LD_matrix = LD_matrix, 
                                 LD_reference = LD_reference,
                                 locus_dir = locus_dir, 
                                 zoom = "10x",
                                 
                                 nott_epigenome = TRUE,  
                                 nott_binwidth = 200,
                                 nott_regulatory_rects = TRUE, 
                                 nott_show_placseq = TRUE) 

Using QTL datasets

  • Plot multiple QTL p-value columns (or really P-value columns from any kind of datset).
  • Each QTL dataset will be plotted as a new track.
dat1 <- data.table::copy(dat)
dat2 <- data.table::copy(dat)
# Make fake QTL P-values for the sake a demonstration
dat1$P <- abs(jitter(dat1$P, amount = 1e-15))
dat2$P <- abs(jitter(dat2$P, amount = 1e-16))
dat_list <- list("fake_eQTL"=dat1, 
                 "fake_sQTL"=dat2)

trk_plot.qtl <- echoplot::plot_locus_multi(dat_ls = dat_list, 
                                           LD_ls = list(LD_matrix,LD_matrix),  
                                           locus_dir = locus_dir,
                                           zoom = "10x")
## LD_matrix detected. Coloring SNPs by LD with lead SNP.
## Filling r/r2 NAs with 0
## LD_matrix detected. Coloring SNPs by LD with lead SNP.
## Filling r/r2 NAs with 0
## +-------- Locus Plot:  BST1 --------+
## + support_thresh = 2
## + Calculating mean Posterior Probability (mean.PP)...
## + 4 fine-mapping methods used.
## + 14 Credible Set SNPs identified.
## + 6 Consensus SNPs identified.
## + Filling NAs in CS cols with 0.
## + Filling NAs in PP cols with 0.
## ++ echoplot:: GWAS full window track
## ++ echoplot:: GWAS track
## ++ echoplot:: Merged fine-mapping track
## Melting PP and CS from 5 fine-mapping methods.
## ++ echoplot:: Adding Gene model track.
## Converting dat to GRanges object.
## max_transcripts= 1 .
## 16  transcripts from  16  genes returned.
## Fetching data...OK
## Parsing exons...OK
## Defining introns...OK
## Defining UTRs...OK
## Defining CDS...OK
## aggregating...
## Done
## Constructing graphics...
## + Adding vertical lines to highlight SNP groups...
## +>+>+>+>+ zoom =  10x  +<+<+<+<+
## + echoplot:: Get window suffix...
## + Constructing zoom polygon...
## + Highlighting zoom origin...
## + Removing subplot margins...
## + Reordering tracks...
## [1] "+ Ensuring last track shows genomic units..."
## + Aligning xlimits for each subplot...
## + Checking track heights...


Session info

utils::sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] patchwork_1.1.2   ggplot2_3.3.6     echolocatoR_2.0.3 BiocStyle_2.26.0 
## 
## loaded via a namespace (and not attached):
##   [1] rappdirs_0.3.3              rtracklayer_1.58.0         
##   [3] GGally_2.1.2                R.methodsS3_1.8.2          
##   [5] ragg_1.2.4                  tidyr_1.2.1                
##   [7] echoLD_0.99.8               bit64_4.0.5                
##   [9] knitr_1.40                  irlba_2.3.5.1              
##  [11] DelayedArray_0.24.0         R.utils_2.12.1             
##  [13] data.table_1.14.4           rpart_4.1.19               
##  [15] KEGGREST_1.38.0             RCurl_1.98-1.9             
##  [17] AnnotationFilter_1.22.0     generics_0.1.3             
##  [19] BiocGenerics_0.44.0         GenomicFeatures_1.50.2     
##  [21] RSQLite_2.2.18              proxy_0.4-27               
##  [23] bit_4.0.4                   tzdb_0.3.0                 
##  [25] xml2_1.3.3                  SummarizedExperiment_1.28.0
##  [27] assertthat_0.2.1            viridis_0.6.2              
##  [29] xfun_0.34                   hms_1.1.2                  
##  [31] jquerylib_0.1.4             evaluate_0.17              
##  [33] fansi_1.0.3                 restfulr_0.0.15            
##  [35] progress_1.2.2              dbplyr_2.2.1               
##  [37] readxl_1.4.1                Rgraphviz_2.41.2           
##  [39] igraph_1.3.5                DBI_1.1.3                  
##  [41] htmlwidgets_1.5.4           reshape_0.8.9              
##  [43] downloadR_0.99.5            stats4_4.2.1               
##  [45] purrr_0.3.5                 ellipsis_0.3.2             
##  [47] dplyr_1.0.10                backports_1.4.1            
##  [49] bookdown_0.29               biomaRt_2.54.0             
##  [51] deldir_1.0-6                MatrixGenerics_1.10.0      
##  [53] vctrs_0.5.0                 Biobase_2.58.0             
##  [55] ensembldb_2.22.0            withr_2.5.0                
##  [57] cachem_1.0.6                BSgenome_1.66.1            
##  [59] checkmate_2.1.0             GenomicAlignments_1.34.0   
##  [61] prettyunits_1.1.1           cluster_2.1.4              
##  [63] ape_5.6-2                   dir.expiry_1.5.1           
##  [65] lazyeval_0.2.2              crayon_1.5.2               
##  [67] basilisk.utils_1.9.4        crul_1.3                   
##  [69] labeling_0.4.2              pkgconfig_2.0.3            
##  [71] GenomeInfoDb_1.34.1         nlme_3.1-160               
##  [73] ProtGenerics_1.30.0         XGR_1.1.8                  
##  [75] nnet_7.3-18                 pals_1.7                   
##  [77] rlang_1.0.6                 lifecycle_1.0.3            
##  [79] filelock_1.0.2              httpcode_0.3.0             
##  [81] BiocFileCache_2.6.0         echotabix_0.99.8           
##  [83] dichromat_2.0-0.1           cellranger_1.1.0           
##  [85] coloc_5.1.0.1               rprojroot_2.0.3            
##  [87] matrixStats_0.62.0          graph_1.76.0               
##  [89] Matrix_1.5-1                osfr_0.2.9                 
##  [91] boot_1.3-28                 base64enc_0.1-3            
##  [93] png_0.1-7                   viridisLite_0.4.1          
##  [95] rjson_0.2.21                rootSolve_1.8.2.3          
##  [97] bitops_1.0-7                R.oo_1.25.0                
##  [99] ggnetwork_0.5.10            Biostrings_2.66.0          
## [101] blob_1.2.3                  mixsqp_0.3-43              
## [103] stringr_1.4.1               echoplot_0.99.5            
## [105] dnet_1.1.7                  readr_2.1.3                
## [107] jpeg_0.1-9                  S4Vectors_0.36.0           
## [109] echodata_0.99.15            scales_1.2.1               
## [111] memoise_2.0.1               magrittr_2.0.3             
## [113] plyr_1.8.7                  hexbin_1.28.2              
## [115] zlibbioc_1.44.0             compiler_4.2.1             
## [117] echoconda_0.99.8            BiocIO_1.8.0               
## [119] RColorBrewer_1.1-3          catalogueR_1.0.0           
## [121] EnsDb.Hsapiens.v75_2.99.0   Rsamtools_2.14.0           
## [123] cli_3.4.1                   XVector_0.38.0             
## [125] echoannot_0.99.10           htmlTable_2.4.1            
## [127] Formula_1.2-4               MASS_7.3-58.1              
## [129] tidyselect_1.2.0            stringi_1.7.8              
## [131] textshaping_0.3.6           highr_0.9                  
## [133] yaml_2.3.6                  supraHex_1.35.0            
## [135] latticeExtra_0.6-30         ggrepel_0.9.1              
## [137] grid_4.2.1                  sass_0.4.2                 
## [139] VariantAnnotation_1.44.0    tools_4.2.1                
## [141] lmom_2.9                    parallel_4.2.1             
## [143] rstudioapi_0.14             foreign_0.8-83             
## [145] piggyback_0.1.4             gridExtra_2.3              
## [147] gld_2.6.6                   farver_2.1.1               
## [149] digest_0.6.30               snpStats_1.47.1            
## [151] BiocManager_1.30.19         Rcpp_1.0.9                 
## [153] GenomicRanges_1.50.0        OrganismDbi_1.40.0         
## [155] httr_1.4.4                  AnnotationDbi_1.60.0       
## [157] RCircos_1.2.2               ggbio_1.46.0               
## [159] biovizBase_1.46.0           colorspace_2.0-3           
## [161] XML_3.99-0.12               fs_1.5.2                   
## [163] reticulate_1.26             IRanges_2.32.0             
## [165] splines_4.2.1               RBGL_1.74.0                
## [167] expm_0.999-6                pkgdown_2.0.6              
## [169] echofinemap_0.99.4          basilisk_1.9.12            
## [171] Exact_3.2                   mapproj_1.2.9              
## [173] systemfonts_1.0.4           jsonlite_1.8.3             
## [175] susieR_0.12.27              R6_2.5.1                   
## [177] Hmisc_4.7-1                 pillar_1.8.1               
## [179] htmltools_0.5.3             glue_1.6.2                 
## [181] fastmap_1.1.0               DT_0.26                    
## [183] BiocParallel_1.32.0         class_7.3-20               
## [185] codetools_0.2-18            maps_3.4.1                 
## [187] mvtnorm_1.1-3               utf8_1.2.2                 
## [189] lattice_0.20-45             bslib_0.4.0                
## [191] tibble_3.1.8                curl_4.3.3                 
## [193] DescTools_0.99.47           zip_2.2.2                  
## [195] openxlsx_4.2.5.1            interp_1.1-3               
## [197] survival_3.4-0              rmarkdown_2.17             
## [199] desc_1.4.2                  munsell_0.5.0              
## [201] e1071_1.7-12                GenomeInfoDbData_1.2.9     
## [203] reshape2_1.4.4              gtable_0.3.1