## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
## ⠊⠉⠡⣀⣀⠊⠉⠡⣀⣀⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠                                    
## ⠌⢁⡐⠉⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠉⢂⡈⠑⣀⠉⢄⡈⠡⣀                                    
## ⠌⡈⡐⢂⢁⠒⡈⡐⢂⢁⠒⡈⡐⢂⢁⠑⡈⡈⢄⢁⠡⠌⡈⠤⢁⠡⠌⡈⠤⢁⠡⠌⡈⡠⢁⢁⠊⡈⡐⢂
## 
## ── 🦇  🦇  🦇 e c h o l o c a t o R 🦇  🦇  🦇 ─────────────────────────────────
## 
## ── v2.0.3 ──────────────────────────────────────────────────────────────────────
## ⠌⡈⡐⢂⢁⠒⡈⡐⢂⢁⠒⡈⡐⢂⢁⠑⡈⡈⢄⢁⠡⠌⡈⠤⢁⠡⠌⡈⠤⢁⠡⠌⡈⡠⢁⢁⠊⡈⡐⢂                                    
## ⠌⢁⡐⠉⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠊⢂⡐⠑⣀⠉⢂⡈⠑⣀⠉⢄⡈⠡⣀                                    
## ⠊⠉⠡⣀⣀⠊⠉⠡⣀⣀⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠⠊⠉⠢⣀⡠                                    
## ⓞ If you use echolocatoR or any of the echoverse subpackages, please cite:      
##      ▶ Brian M Schilder, Jack Humphrey, Towfique                                
##      Raj (2021) echolocatoR: an automated                                       
##      end-to-end statistical and functional                                      
##      genomic fine-mapping pipeline,                                             
##      Bioinformatics; btab658,                                                   
##      https://doi.org/10.1093/bioinformatics/btab658                             
## ⓞ Please report any bugs/feature requests on GitHub:
## 
##      https://github.com/RajLabMSSM/echolocatoR/issues
## ⓞ Contributions are welcome!:
## 
##      https://github.com/RajLabMSSM/echolocatoR/pulls
## 
## ────────────────────────────────────────────────────────────────────────────────

QTL pipeline

Lopes, K.d.P., Snijders, G.J.L., Humphrey, J. et al. Genetic analysis of the human microglial transcriptome across brain regions, aging and disease pathologies. Nat Genet 54, 4–17 (2022). https://doi.org/10.1038/s41588-021-00976-y

Import QTL data

This data is actually merged GWAS-QTL colocalization results, but it contains all of the necessary columns from the original eQTL summary stats that we need to perform eQTL fine-mapping.

coloc_res <- echodata::get_Kunkle2019_coloc(return_path = TRUE)

Prepare colmap

Prepare a column mapping object for the summary statistics. We’ll reuse this for both the import_topSNPs and finemap_loci steps.

colmap <- echodata::construct_colmap( 
      CHR = "chr",
      POS = "pos",
      N = "qtl.N",
      SNP = "snp",
      P = "qtl.pvalues",
      Effect = "qtl.beta",
      StdErr = "qtl.varbeta",
      MAF = "qtl.MAF",
      Locus = "Locus",
      Gene = "gene")

Prepare top_SNPs data.frame

  • In this case, we don’t have a top SNPs file ready. So we’re just going to make one directly from the full summary stats file itself (NOTE: You can only use this approach if you can fit the entire file in memory).
  • In this case, you’ll want to make sure to set grouping_vars=c("Locus","Gene") so that you get top SNPs for each eGene-locus pair (not just one SNP per locus).
topSNPs <- echodata::import_topSNPs(
  topSS = coloc_res$path,
  colmap = colmap,
  ## Important for QTLs: group by both Locus and Gene
  grouping_vars = c("Locus","Gene"))
## Loading required namespace: MungeSumstats
## Renaming column: chr ==> CHR
## Renaming column: pos ==> POS
## Renaming column: snp ==> SNP
## Renaming column: qtl.pvalues ==> P
## Renaming column: qtl.beta ==> Effect
## Renaming column: qtl.varbeta ==> StdErr
## Renaming column: qtl.MAF ==> MAF
## Renaming column: gene ==> Gene
## Renaming column: qtl.N ==> N
## [1] "+ Assigning Gene and Locus independently."
## Standardising column headers.
## First line of summary statistics file:
## Locus    SNP V.df1   z.df1   r.df1   lABF.df1    V.df2   z.df2   r.df2   lABF.df2    internal.sum.lABF   SNP.PP.H4   gwas.pvalues    gwas.beta   gwas.varbeta    gwas.MAF    CHR POS A1  A2  gwas.N  gwas.type   s   Gene    P   Effect  StdErr  MAF QTL_chr QTL_pos N   qtl.type    N_cases N_controls  
## Returning unmapped column names without making them uppercase.
## + Mapping colnames from MungeSumstats ==> echolocatoR
head(topSNPs)
##                     Locus        SNP      V.df1      z.df1     r.df1   lABF.df1
## 1:  ABCA7_ENSG00000160953 rs76951864 0.00227529 -1.2138365 0.9461792 -0.7639979
## 2:   BIN1_ENSG00000136731  rs4663110 0.00021904  2.0405405 0.9945538 -0.5358563
## 3:    CR1_ENSG00000266094  rs1518110 0.00030276 -1.0977011 0.9924879 -1.8476694
## 4: INPP5D_ENSG00000168918  rs1881492 0.00036100  0.1631579 0.9910557 -2.3451794
## 5: MS4A6A_ENSG00000149476  rs6591611 0.00028900 -1.4176471 0.9928268 -1.4710500
## 6:  PILRA_ENSG00000106366  rs2227631 0.00020736 -0.1041667 0.9948427 -2.6282771
##          V.df2     z.df2     r.df2   lABF.df2 internal.sum.lABF    SNP.PP.H4
## 1: 0.007802613 -5.826752 0.2374864  3.8958871         3.1318892 6.231637e-08
## 2: 0.004149176  2.778507 0.4321435  1.3851521         0.8492958 1.013056e-25
## 3: 0.002913938 -3.976592 0.4592553  3.3237628         1.4760934 4.495411e-11
## 4: 0.012164546 -2.654756 0.1470877  0.4387679        -1.9064116 3.587352e-08
## 5: 0.015193274  2.675112 0.2112492  0.6372210        -0.8338290 8.201862e-13
## 6: 0.006858275  8.459513 0.5879401 20.5941901        17.9659130 9.907667e-01
##    gwas.pvalues gwas.beta gwas.varbeta gwas.MAF CHR       POS A1 A2 gwas.N
## 1:      0.22500   -0.0579   0.00227529   0.1054  19    374604  A  G  94437
## 2:      0.04153    0.0302   0.00021904   0.6262   2 127922463  T  C  94437
## 3:      0.27270   -0.0191   0.00030276   0.7803   1 206944861  A  C  94437
## 4:      0.87100    0.0031   0.00036100   0.7763   2 233406998  T  G  94437
## 5:      0.15760   -0.0241   0.00028900   0.2207  11  60405172  A  C  94437
## 6:      0.91860   -0.0015   0.00020736   0.4056   7 100769538  A  G  94437
##    gwas.type    s            Gene           P    Effect      StdErr    Freq
## 1:        cc 0.37 ENSG00000160953 8.31563e-09 -0.514691 0.007802613 0.08770
## 2:        cc 0.37 ENSG00000136731 7.93573e-05  0.178975 0.004149176 0.34385
## 3:        cc 0.37 ENSG00000266094 1.00516e-04 -0.214660 0.002913938 0.25363
## 4:        cc 0.37 ENSG00000168918 6.42575e-06 -0.292801 0.012164546 0.14447
## 5:        cc 0.37 ENSG00000149476 2.20256e-04  0.329737 0.015193274 0.18503
## 6:        cc 0.37 ENSG00000106366 5.45534e-17  0.700572 0.006858275 0.42796
##    QTL_chr   QTL_pos  N qtl.type N_cases N_controls
## 1:   chr19    374604 90    quant   34941      59496
## 2:    chr2 127164887 90    quant   34941      59496
## 3:    chr1 206771516 90    quant   34941      59496
## 4:    chr2 232542288 90    quant   34941      59496
## 5:   chr11  60637699 90    quant   34941      59496
## 6:    chr7 101126257 90    quant   34941      59496

Run fine-mapping pipeline

res <- echolocatoR::finemap_loci(fullSS_path = coloc_res$path,
                                 topSNPs = topSNPs,
                                 ## Let's just fine-map 1 locus for demo purposes
                                 loci = topSNPs$Locus[1],
                                 dataset_name = "Kunkle_2019.microgliaQTL",
                                 dataset_type = "QTL",
                                 bp_distance = 1000, 
                                 colmap = colmap,
                                 show_plot = TRUE,
                                 finemap_methods = c("ABF","FINEMAP","SUSIE") )
## [1] "+ Assigning Gene and Locus independently."
## Standardising column headers.
## First line of summary statistics file:
## Locus    SNP V.df1   z.df1   r.df1   lABF.df1    V.df2   z.df2   r.df2   lABF.df2    internal.sum.lABF   SNP.PP.H4   gwas.pvalues    gwas.beta   gwas.varbeta    gwas.MAF    CHR POS A1  A2  gwas.N  gwas.type   s   Gene    P   Effect  StdErr  Freq    QTL_chr QTL_pos N   qtl.type    N_cases N_controls  
## Returning unmapped column names without making them uppercase.
## + Mapping colnames from MungeSumstats ==> echolocatoR
## WARNING:: fullSS_genome_build not provided. Assuming 'GRCH37'.
## ┌─────────────────────────────────────────────────────────┐
## │                                                         │
## │   )))> 🦇 ABCA7_ENSG00000160953 [locus 1 / 1] 🦇 <(((
## │                                                         │
## └─────────────────────────────────────────────────────────┘
## 
## ────────────────────────────────────────────────────────────────────────────────
## 
## ── Step 1 ▶▶▶ Query 🔎 ─────────────────────────────────────────────────────────
## 
## ────────────────────────────────────────────────────────────────────────────────
## + Query Method: tabix
## Constructing GRanges query using min/max ranges within a single chromosome.
## query_dat is already a GRanges object. Returning directly.
## ========= echotabix::convert =========
## Converting full summary stats file to tabix format for fast querying.
## Inferred format: 'table'
## Explicit format: 'table'
## Inferring comment_char from tabular header: 'Locus'
## Determining chrom type from file header.
## Chromosome format: 1
## Detecting column delimiter.
## Identified column separator: ,
## WARNING: Columns must be tab-separated ('\t') in order to be sorted outside of R (which is more memory-efficient). 
## Will instead import full data into R to sort and rewrite to disk.
## Sorting rows by coordinates via data.table.
## Constructing outputs
## Using existing bgzipped file: /github/home/.cache/R/echodata/Microglia_all_regions_Kunkle_2019_COLOC.snp-level_select.tsv.bgz 
## Set force_new=TRUE to override this.
## Tabix-indexing file using: Rsamtools
## Data successfully converted to bgzip-compressed, tabix-indexed format.
## ========= echotabix::query =========
## query_dat is already a GRanges object. Returning directly.
## Inferred format: 'table'
## Querying tabular tabix file using: Rsamtools.
## Checking query chromosome style is correct.
## Chromosome format: 1
## Retrieving data.
## Converting query results to data.table.
## Processing query: 19:373604-375604
## Adding 'query' column to results.
## Retrieved data with 10 rows
## Saving query ==> /tmp/RtmpVZRnW7/results/QTL/Kunkle_2019.microgliaQTL/ABCA7_ENSG00000160953/ABCA7_ENSG00000160953_Kunkle_2019.microgliaQTL_subset.tsv.gz
## + Query: 10 SNPs x 34 columns.
## Standardizing summary statistics subset.
## Standardizing main column names.
## ++ Preparing A1,A1 cols
## ++ Preparing MAF,Freq cols.
## ++ Could not infer MAF from Freq.
## ++ Removing SNPs with MAF== 0 | NULL | NA or >1.
## ++ Preparing N_cases,N_controls cols.
## ++ Preparing proportion_cases col.
## ++ Calculating proportion_cases from N_cases and N_controls.
## Preparing sample size column (N).
## Using existing 'N' column.
## + Imputing t-statistic from Effect and StdErr.
## + leadSNP missing. Assigning new one by min p-value.
## ++ Ensuring Effect,StdErr,P are numeric.
## ++ Ensuring 1 SNP per row and per genomic coordinate.
## ++ Removing extra whitespace
## + Standardized query: 10 SNPs x 37 columns.
## ++ Saving standardized query ==> /tmp/RtmpVZRnW7/results/QTL/Kunkle_2019.microgliaQTL/ABCA7_ENSG00000160953/ABCA7_ENSG00000160953_Kunkle_2019.microgliaQTL_subset.tsv.gz
## 
## ────────────────────────────────────────────────────────────────────────────────
## 
## ── Step 2 ▶▶▶ Extract Linkage Disequilibrium 🔗 ────────────────────────────────
## 
## ────────────────────────────────────────────────────────────────────────────────
## LD_reference identified as: 1kg.
## Using 1000Genomes as LD reference panel.
## Constructing GRanges query using min/max ranges across one or more chromosomes.
## + as_blocks=TRUE: Will query a single range per chromosome that covers all regions requested (plus anything in between).
## LD Reference Panel = 1KGphase3
## Querying 1KG remote server.
## Selecting 503 EUR individuals from 1kgphase3.
## ========= echotabix::query =========
## query_dat is already a GRanges object. Returning directly.
## Explicit format: 'vcf'
## Querying VCF tabix file.
## Querying VCF file using: VariantAnnotation
## Checking query chromosome style is correct.
## Chromosome format: 1
## Filtering query to 503 samples and returning ScanVcfParam object.
## Retrieving data.
## Time difference of 4 secs
## Removing 10 / 99 non-overlapping SNPs.
## Saving VCF subset ==> /tmp/RtmpVZRnW7/VCF/RtmpVZRnW7.chr19-373673-375039.ALL.chr19.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.bgz
## Warning in .Call(.make_vcf_geno, filename, fixed, names(geno), as.list(geno), :
## converting NULL pointer to R NULL
## Time difference of 0.4 secs
## Retrieved data with 10 rows across 503 samples.
## echoLD::snpStats:: `MAF` column already present.
## echoLD:snpStats:: Computing pairwise LD between 10 SNPs across 503 individuals (stats = R).
## Time difference of 0 secs
## 10 x 10 LD_matrix (sparse)
## Converting obj to sparseMatrix.
## Saving sparse LD matrix ==> /tmp/RtmpVZRnW7/results/QTL/Kunkle_2019.microgliaQTL/ABCA7_ENSG00000160953/LD/ABCA7_ENSG00000160953.1KGphase3_LD.RDS
## Removing 1 temp files.
## + FILTER:: Filtering by LD features.
## 
## ────────────────────────────────────────────────────────────────────────────────
## 
## ── Step 3 ▶▶▶ Filter SNPs 🚰 ───────────────────────────────────────────────────
## 
## ────────────────────────────────────────────────────────────────────────────────
## FILTER:: Filtering by SNP features.
## + FILTER:: Post-filtered data: 10 x 37
## + Subsetting LD matrix and dat to common SNPs...
## Removing unnamed rows/cols
## Replacing NAs with 0
## + LD_matrix = 10 SNPs.
## + dat = 10 SNPs.
## + 10 SNPs in common.
## Converting obj to sparseMatrix.
## 
## ────────────────────────────────────────────────────────────────────────────────
## 
## ── Step 4 ▶▶▶ Fine-map 🔊 ──────────────────────────────────────────────────────
## 
## ────────────────────────────────────────────────────────────────────────────────
## Gathering method sources.
## Gathering method citations.
## Preparing sample size column (N).
## Using existing 'N' column.
## Gathering method sources.
## Gathering method citations.
## ABF
## ✅ All required columns present.
## FINEMAP
## ✅ All required columns present.
## ✅ All optional columns present.
## SUSIE
## ✅ All required columns present.
## ✅ All optional columns present.
## ++ Fine-mapping using 3 tool(s): ABF, FINEMAP, SUSIE
## 
## +++ Multi-finemap:: ABF +++
## Using all default values for finemap_args$ABF
## Preparing sample size column (N).
## Using existing 'N' column.
## Running ABF.
## ++ Credible Set SNPs identified = 1
## ++ Merging ABF results with multi-finemap data.
## 
## +++ Multi-finemap:: FINEMAP +++
## Using all default values for finemap_args$FINEMAP
## Preparing sample size column (N).
## Using existing 'N' column.
## + Subsetting LD matrix and dat to common SNPs...
## Removing unnamed rows/cols
## Replacing NAs with 0
## + LD_matrix = 10 SNPs.
## + dat = 10 SNPs.
## + 10 SNPs in common.
## Converting obj to sparseMatrix.
## Constructing master file.
## Constructing data.z file.
## Constructing data.ld file.
## FINEMAP path: /github/home/.cache/R/echofinemap/FINEMAP/finemap_v1.4.1_x86_64/finemap_v1.4.1_x86_64
## Inferred FINEMAP version: 1.4.1
## Running FINEMAP.
## cd .../ABCA7_ENSG00000160953 &&
##     .../finemap_v1.4.1_x86_64
##    
##     --sss
##    
##     --in-files .../master
##    
##     --log
##    
##     --n-causal-snps 5
## 
## |--------------------------------------|
## | Welcome to FINEMAP v1.4.1            |
## |                                      |
## | (c) 2015-2022 University of Helsinki |
## |                                      |
## | Help :                               |
## | - ./finemap --help                   |
## | - www.finemap.me                     |
## | - www.christianbenner.com            |
## |                                      |
## | Contact :                            |
## | - finemap@christianbenner.com        |
## | - matti.pirinen@helsinki.fi          |
## |--------------------------------------|
## 
## --------
## SETTINGS
## --------
## - dataset            : all
## - corr-config        : 0.95
## - n-causal-snps      : 5
## - n-configs-top      : 50000
## - n-conv-sss         : 100
## - n-iter             : 100000
## - n-threads          : 1
## - prior-k0           : 0
## - prior-std          : 0.05 
## - prob-conv-sss-tol  : 0.001
## - prob-cred-set      : 0.95
## 
## ------------
## FINE-MAPPING (1/1)
## ------------
## - GWAS summary stats               : FINEMAP/data.z
## - SNP correlations                 : FINEMAP/data.ld
## - Causal SNP stats                 : FINEMAP/data.snp
## - Causal configurations            : FINEMAP/data.config
## - Credible sets                    : FINEMAP/data.cred
## - Log file                         : FINEMAP/data.log_sss
## 
- Reading summary statistics       : +
- Reading summary statistics       : -
- Reading summary stats            : done!   
- Reading SNP correlations         : 0.000%
- Reading SNP correlations         : done!   
- Reading input                    : done!   
## 
## 
- Estimating residual variance     : +
- Estimating residual variance     : -
- Updated prior SD of effect sizes : 0.05 0.108 0.234 0.505 
## 
## - Number of GWAS samples           : 90
## - Number of SNPs                   : 10
## - Prior-Pr(# of causal SNPs is k)  : 
##   (0 -> 0)
##    1 -> 0.595
##    2 -> 0.297
##    3 -> 0.0881
##    4 -> 0.0171
##    5 -> 0.00229
## 0 configurations evaluated (0.000/100%)
- 10 configurations evaluated (0.000/100%)
- 10 configurations evaluated (0.000/100%)
- 10 configurations evaluated (0.050/100%)
- 10 configurations evaluated (0.100/100%) : converged after 100 iterations
## 
- Computing causal SNP statistics  : 10.000%
- Computing causal SNP statistics  : done!   
## - Regional SNP heritability        : 0.922 (SD: 0.0298 ; 95% CI: [0.864,0.979])
## - Log10-BF of >= one causal SNP    : 28.8
## - Post-expected # of causal SNPs   : 1
## - Post-Pr(# of causal SNPs is k)   : 
##   (0 -> 0)
##    1 -> 1
##    2 -> 0
##    3 -> 0
##    4 -> 0
##    5 -> 0
## - Computing credible sets          : 
- Writing causal configurations    : 10.000%
- Writing causal SNP statistics    : 10.000%
- Writing output                   : done!   
## - Run time                         : 0 hours, 0 minutes, 0 seconds
## 1 data.cred* file(s) found in the same subfolder.
## Selected file based on postPr_k: data.cred1
## Importing conditional probabilities (.cred file).
## No configurations were causal at PP>=0.95.
## Importing marginal probabilities (.snp file).
## Importing configuration probabilities (.config file).
## FINEMAP was unable to identify any credible sets at PP>=0.95.
## ++ Credible Set SNPs identified = 0
## ++ Merging FINEMAP results with multi-finemap data.
## 
## +++ Multi-finemap:: SUSIE +++
## Using all default values for finemap_args$SUSIE
## Loading required namespace: Rfast
## Preparing sample size column (N).
## Using existing 'N' column.
## + SUSIE:: sample_size=90
## + Subsetting LD matrix and dat to common SNPs...
## Removing unnamed rows/cols
## Replacing NAs with 0
## + LD_matrix = 10 SNPs.
## + dat = 10 SNPs.
## + 10 SNPs in common.
## Converting obj to sparseMatrix.
## + SUSIE:: Using `susie_rss()` from susieR v0.12.27
## + SUSIE:: Extracting Credible Sets.
## ++ Credible Set SNPs identified = 5
## ++ Merging SUSIE results with multi-finemap data.
## Identifying Consensus SNPs...
## + support_thresh = 2
## + Calculating mean Posterior Probability (mean.PP)...
## + 3 fine-mapping methods used.
## + 6 Credible Set SNPs identified.
## + 0 Consensus SNPs identified.
## Saving merged finemapping results ==> /tmp/RtmpVZRnW7/results/QTL/Kunkle_2019.microgliaQTL/ABCA7_ENSG00000160953/Multi-finemap/1KGphase3_LD.Multi-finemap.tsv.gz
## + Fine-mapping with 'ABF, FINEMAP, SUSIE' completed:
## 
## ────────────────────────────────────────────────────────────────────────────────
## 
## ── Step 5 ▶▶▶ Plot 📈 ──────────────────────────────────────────────────────────
## 
## ────────────────────────────────────────────────────────────────────────────────
## +-------- Locus Plot:  ABCA7_ENSG00000160953 --------+
## + support_thresh = 2
## + Calculating mean Posterior Probability (mean.PP)...
## + 3 fine-mapping methods used.
## + 6 Credible Set SNPs identified.
## + 0 Consensus SNPs identified.
## + Filling NAs in CS cols with 0.
## + Filling NAs in PP cols with 0.
## LD_matrix detected. Coloring SNPs by LD with lead SNP.
## ++ echoplot:: QTL full window track
## ++ echoplot:: QTL track
## ++ echoplot:: Merged fine-mapping track
## Melting PP and CS from 4 fine-mapping methods.
## + echoplot:: Constructing SNP labels.
## Adding SNP group labels to locus plot.
## ++ echoplot:: Adding Gene model track.
## Converting dat to GRanges object.
## Loading required namespace: EnsDb.Hsapiens.v75
## max_transcripts= 1 .
## 1  transcripts from  1  genes returned.
## Fetching data...OK
## Parsing exons...OK
## Defining introns...OK
## Defining UTRs...OK
## Defining CDS...OK
## aggregating...
## Done
## Constructing graphics...
## + Adding vertical lines to highlight SNP groups.
## +>+>+>+>+ zoom =  1x  +<+<+<+<+
## + echoplot:: Get window suffix...
## + echoplot:: Removing QTL full window track @ zoom=1x
## + Removing subplot margins...
## + Reordering tracks...
## + Ensuring last track shows genomic units.
## + Aligning xlimits for each subplot...
## + Checking track heights...
## + echoplot:: Saving plot ==> /tmp/RtmpVZRnW7/results/QTL/Kunkle_2019.microgliaQTL/ABCA7_ENSG00000160953/multiview.ABCA7_ENSG00000160953.1KGphase3.1x.png
## Found more than one class "simpleUnit" in cache; using the first, from namespace 'hexbin'
## Also defined by 'ggbio'
## Recording all `finemap_locus` arguments.
## Formatting locus results.
## 
## ────────────────────────────────────────────────────────────────────────────────
## 
## ── Step 6 ▶▶▶ Postprocess data 🎁 ──────────────────────────────────────────────
## 
## ────────────────────────────────────────────────────────────────────────────────
## Returning results as nested list.

## All loci done in: 0.27 min
## 

Session info

utils::sessionInfo()
## R Under development (unstable) (2023-01-11 r83598)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.1 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: UTC
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] snpStats_1.49.0   Matrix_1.5-3      survival_3.5-0    echolocatoR_2.0.3
## [5] BiocStyle_2.27.0 
## 
## loaded via a namespace (and not attached):
##   [1] ProtGenerics_1.31.0         fs_1.5.2                   
##   [3] matrixStats_0.63.0          bitops_1.0-7               
##   [5] EnsDb.Hsapiens.v75_2.99.0   httr_1.4.4                 
##   [7] RColorBrewer_1.1-3          Rgraphviz_2.43.0           
##   [9] tools_4.3.0                 backports_1.4.1            
##  [11] utf8_1.2.2                  R6_2.5.1                   
##  [13] DT_0.27                     lazyeval_0.2.2             
##  [15] withr_2.5.0                 prettyunits_1.1.1          
##  [17] GGally_2.1.2                gridExtra_2.3              
##  [19] cli_3.6.0                   Biobase_2.59.0             
##  [21] textshaping_0.3.6           labeling_0.4.2             
##  [23] ggbio_1.47.0                sass_0.4.4                 
##  [25] mvtnorm_1.1-3               readr_2.1.3                
##  [27] proxy_0.4-27                pkgdown_2.0.7              
##  [29] mixsqp_0.3-48               Rsamtools_2.15.1           
##  [31] systemfonts_1.0.4           foreign_0.8-84             
##  [33] R.utils_2.12.2              dichromat_2.0-0.1          
##  [35] maps_3.4.1                  BSgenome_1.67.3            
##  [37] readxl_1.4.1                susieR_0.12.27             
##  [39] pals_1.7                    rstudioapi_0.14            
##  [41] RSQLite_2.2.20              httpcode_0.3.0             
##  [43] generics_0.1.3              BiocIO_1.9.1               
##  [45] echoconda_0.99.9            dplyr_1.0.10               
##  [47] zip_2.2.2                   interp_1.1-3               
##  [49] fansi_1.0.3                 DescTools_0.99.47          
##  [51] S4Vectors_0.37.3            catalogueR_1.0.1           
##  [53] R.methodsS3_1.8.2           lifecycle_1.0.3            
##  [55] yaml_2.3.6                  SummarizedExperiment_1.29.1
##  [57] BiocFileCache_2.7.1         echoplot_0.99.6            
##  [59] grid_4.3.0                  blob_1.2.3                 
##  [61] crayon_1.5.2                dir.expiry_1.7.0           
##  [63] lattice_0.20-45             GenomicFeatures_1.51.2     
##  [65] mapproj_1.2.11              KEGGREST_1.39.0            
##  [67] MungeSumstats_1.7.15        pillar_1.8.1               
##  [69] knitr_1.41                  GenomicRanges_1.51.4       
##  [71] rjson_0.2.21                osfr_0.2.9                 
##  [73] boot_1.3-28.1               gld_2.6.6                  
##  [75] codetools_0.2-18            glue_1.6.2                 
##  [77] data.table_1.14.6           coloc_5.1.0.1              
##  [79] vctrs_0.5.1                 png_0.1-8                  
##  [81] XGR_1.1.8                   cellranger_1.1.0           
##  [83] gtable_0.3.1                assertthat_0.2.1           
##  [85] cachem_1.0.6                dnet_1.1.7                 
##  [87] xfun_0.36                   openxlsx_4.2.5.1           
##  [89] Rfast_2.0.6                 gargle_1.2.1               
##  [91] ellipsis_0.3.2              nlme_3.1-161               
##  [93] bit64_4.0.5                 progress_1.2.2             
##  [95] filelock_1.0.2              googleAuthR_2.0.0          
##  [97] GenomeInfoDb_1.35.12        rprojroot_2.0.3            
##  [99] bslib_0.4.2                 irlba_2.3.5.1              
## [101] rpart_4.1.19                colorspace_2.0-3           
## [103] BiocGenerics_0.45.0         DBI_1.1.3                  
## [105] Hmisc_4.7-2                 nnet_7.3-18                
## [107] Exact_3.2                   tidyselect_1.2.0           
## [109] bit_4.0.5                   compiler_4.3.0             
## [111] curl_5.0.0                  graph_1.77.1               
## [113] htmlTable_2.4.1             expm_0.999-7               
## [115] basilisk.utils_1.11.1       xml2_1.3.3                 
## [117] desc_1.4.2                  DelayedArray_0.25.0        
## [119] bookdown_0.32               rtracklayer_1.59.1         
## [121] checkmate_2.1.0             scales_1.2.1               
## [123] hexbin_1.28.2               echoLD_0.99.9              
## [125] RBGL_1.75.0                 RCircos_1.2.2              
## [127] rappdirs_0.3.3              stringr_1.5.0              
## [129] supraHex_1.37.0             digest_0.6.31              
## [131] piggyback_0.1.4             rmarkdown_2.20             
## [133] basilisk_1.11.2             XVector_0.39.0             
## [135] htmltools_0.5.4             pkgconfig_2.0.3            
## [137] jpeg_0.1-10                 base64enc_0.1-3            
## [139] MatrixGenerics_1.11.0       echodata_0.99.16           
## [141] highr_0.10                  ensembldb_2.23.1           
## [143] dbplyr_2.3.0                fastmap_1.1.0              
## [145] rlang_1.0.6                 htmlwidgets_1.6.1          
## [147] farver_2.1.1                echofinemap_0.99.5         
## [149] jquerylib_0.1.4             jsonlite_1.8.4             
## [151] BiocParallel_1.33.9         R.oo_1.25.0                
## [153] VariantAnnotation_1.45.0    RCurl_1.98-1.9             
## [155] magrittr_2.0.3              Formula_1.2-4              
## [157] GenomeInfoDbData_1.2.9      ggnetwork_0.5.10           
## [159] patchwork_1.1.2             munsell_0.5.0              
## [161] Rcpp_1.0.9                  ggnewscale_0.4.8           
## [163] ape_5.6-2                   viridis_0.6.2              
## [165] reticulate_1.27             RcppZiggurat_0.1.6         
## [167] stringi_1.7.12              rootSolve_1.8.2.3          
## [169] zlibbioc_1.45.0             MASS_7.3-58.1              
## [171] plyr_1.8.8                  parallel_4.3.0             
## [173] ggrepel_0.9.2               lmom_2.9                   
## [175] deldir_1.0-6                echoannot_0.99.10          
## [177] Biostrings_2.67.0           splines_4.3.0              
## [179] hms_1.1.2                   igraph_1.3.5               
## [181] reshape2_1.4.4              biomaRt_2.55.0             
## [183] stats4_4.3.0                crul_1.3                   
## [185] XML_3.99-0.13               evaluate_0.20              
## [187] latticeExtra_0.6-30         biovizBase_1.47.0          
## [189] BiocManager_1.30.19         tzdb_0.3.0                 
## [191] tidyr_1.2.1                 purrr_1.0.1                
## [193] reshape_0.8.9               ggplot2_3.4.0              
## [195] echotabix_0.99.9            restfulr_0.0.15            
## [197] AnnotationFilter_1.23.0     e1071_1.7-12               
## [199] downloadR_0.99.6            viridisLite_0.4.1          
## [201] class_7.3-20.1              ragg_1.2.5                 
## [203] OrganismDbi_1.41.0          tibble_3.1.8               
## [205] memoise_2.0.1               AnnotationDbi_1.61.0       
## [207] GenomicAlignments_1.35.0    IRanges_2.33.0             
## [209] cluster_2.1.4