255 samples | Different brain regions from the same donor | Multi disease cohort.

Remove BatchEffects

(n = 112)

Only the donors who share the four main brain regions.
a = Voom without correction. b = After removeBatchEffect without regressing out tissue.

Covariates removed: sex, cause_of_death_categories, picard_pct_mrna_bases, picard_summed_median, picard_pct_ribosomal_bases and C1-C4. Without regressing out tissue.

Donors are numbers

PCA with donors who share the 4 main brain tissues. 112 samples from 28 donors.

a = Voom without correction. b = After removeBatchEffect without regressing out tissue.

metadata_numb$donor_numb = as.numeric(as.factor(metadata_numb$donor_id)) # Gera números por donor! 

metadata_numb$tissue_sm = as.character(metadata_numb$tissue)
metadata_numb$tissue_sm[metadata_numb$tissue_sm == "MFG"] <- "m"
metadata_numb$tissue_sm[metadata_numb$tissue_sm == "STG"] <- "s"
metadata_numb$tissue_sm[metadata_numb$tissue_sm == "THA"] <- "t"
metadata_numb$tissue_sm[metadata_numb$tissue_sm == "SVZ"] <- "z"
metadata_numb$tissue_sm <- as.factor(metadata_numb$tissue_sm)

metadata_numb$donor_numb2 <- paste0(metadata_numb$donor_numb, metadata_numb$tissue_sm)
rownames(metadata_numb) <- metadata_numb$donor_numb2

genes_voom_numb <- genes_counts_voom_3rd[, colnames(genes_counts_voom_3rd) %in% metadata_numb$donor_tissue]
# all(colnames(genes_voom_numb) == metadata_numb$donor_tissue) # Check the order 
colnames(genes_voom_numb) <- rownames(metadata_numb)

res.pca = prcomp(t(genes_voom_numb)) 

g9 <- autoplot(res.pca, data = metadata_numb, colour = 'tissue', label=T, shape = F) +
  scale_colour_futurama() +
  easy_add_legend_title("Region") +
 # scale_colour_viridis_c() +
  theme_classic()
 
############# Using residuals 
residuals_numb <- allResiduals[, colnames(allResiduals) %in% metadata_numb$donor_tissue ] #Calculated in the later chunck for 112 samples
# all(colnames(residuals_numb) == metadata_numb$donor_tissue)
colnames(residuals_numb) <- rownames(metadata_numb)

res.pca = prcomp(t(allResiduals)) 

g10 <- autoplot(res.pca, data = metadata_numb, colour = 'tissue', label=T, shape = F) +
  scale_colour_futurama() +
  easy_add_legend_title("Region") +
 # scale_colour_viridis_c() +
  theme_classic()

#pdf(paste0(plots4paper, "PCA_112s_voomxresiduals_numbers.pdf"), width=10, height=4)
ggarrange(g9,g10, labels = c("a", "b"))
#dev.off()

R version 3.6.2 (2019-12-12) Platform: x86_64-apple-darwin15.6.0 (64-bit) Running under: macOS Catalina 10.15.5

Matrix products: default BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale: [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages: [1] grid stats graphics grDevices utils datasets methods
[8] base

other attached packages: [1] edgeR_3.28.0 limma_3.42.0 ggpubr_0.2.4 magrittr_1.5
[5] ggeasy_0.1.0 tidyr_1.1.0 factoextra_1.0.6 ggsci_2.9
[9] ggfortify_0.4.10 gridExtra_2.3 RColorBrewer_1.1-2 ggplot2_3.3.2
[13] kableExtra_1.1.0 dplyr_1.0.0 knitr_1.26

loaded via a namespace (and not attached): [1] Rcpp_1.0.4.6 pillar_1.4.4 compiler_3.6.2 tools_3.6.2
[5] digest_0.6.25 lattice_0.20-38 evaluate_0.14 lifecycle_0.2.0
[9] tibble_3.0.1 gtable_0.3.0 viridisLite_0.3.0 pkgconfig_2.0.3
[13] rlang_0.4.6 rstudioapi_0.11 ggrepel_0.8.2 yaml_2.2.0
[17] xfun_0.11 withr_2.2.0 stringr_1.4.0 httr_1.4.1
[21] xml2_1.2.2 generics_0.0.2 vctrs_0.3.1 hms_0.5.3
[25] cowplot_1.0.0 locfit_1.5-9.1 webshot_0.5.2 tidyselect_1.1.0 [29] glue_1.4.1 R6_2.4.1 rmarkdown_2.0 farver_2.0.3
[33] readr_1.3.1 purrr_0.3.4 scales_1.1.1 ellipsis_0.3.1
[37] htmltools_0.4.0 rvest_0.3.5 colorspace_1.4-1 ggsignif_0.6.0
[41] labeling_0.3 stringi_1.4.6 munsell_0.5.0 crayon_1.3.4