Using Dream | PD x CT.
Differential expression for repeated measures (dream) uses a linear model model to increase power and decrease false positives for RNA-seq datasets with multiple measurements per individual. The analysis fits seamlessly into the widely used workflow of limma/voom (Law et al. 2014).
expression_dir = "~/ad-omics_hydra/microglia_omics/expression_tables/added_pilot_314s/expr_4brain_regions/"
work_plots = "~/pd-omics/katia/Microglia/MiGA_public_release/DE_diagnosis/"
metadata_path = "~/pd-omics/katia/Microglia/mic_255s/metadata_files/"
load(paste0(expression_dir, "Expression_filt_255s.Rdata"))
#dim(genes_counts_exp_3rd) # 19376 255
load(paste0(metadata_path, "metadata_255filt_eng_29jun2020.Rdata"))
#str(metadata3rd_pass)
metadata <- metadata3rd_pass
samples_case = as.character(metadata$donor_tissue[metadata$main_diagnosis %in% "Parkinson"])
samples_control = as.character(metadata$donor_tissue[metadata$main_diagnosis %in% "Control"])
rownames(metadata) <- metadata$donor_tissue
#To pick up only the samples for DEG analysis
genes_counts4deg = genes_counts_exp_3rd[, colnames(genes_counts_exp_3rd) %in% c(samples_case,samples_control) ]
metadata4deg = metadata[rownames(metadata) %in% c(samples_case,samples_control) ,]
# all(rownames(metadata4deg) == colnames(genes_counts4deg)) # # The rownames of the metadata needs to be in the same order as colnames expression table
# str(metadata4deg) #shows class for all columns
# table(metadata4deg$main_diagnosis)
[1] “14-078-GFM” “15-024-GFM” “15-024-THA” “15-041-THA” “15-097-GTS” [6] “15-110-GTS” “16-016-THA” “16-102-GFM” “17-012-GFM” “17-012-SVZ” [11] “17-012-THA” “MG-06-GFM” “MG-06-SVZ” “MG-08-GFM” “MG-08-SVZ” [16] “MG-13-GFM” “MG-13-SVZ” “MG-14-SVZ”
[1] “14-005-GFM” “14-005-GTS” “14-015-GFM” “14-015-GTS” “14-029-GFM” [6] “14-029-GTS” “14-051-GTS” “14-069-GFM” “14-069-GTS” “14-075-GFM” [11] “14-075-GTS” “15-018-GFM” “15-018-GTS” “15-027-GFM” “15-034-GFM” [16] “15-055-GFM” “15-055-GTS” “15-074-THA” “15-087-GFM” “15-087-GTS” [21] “15-087-THA” “15-089-GFM” “15-089-GTS” “15-089-THA” “16-027-GFM” [26] “16-027-GTS” “16-038-GFM” “16-046-GFM” “16-046-GTS” “16-046-THA” [31] “16-056-GFM” “16-056-THA” “16-067-GFM” “16-067-GTS” “16-067-THA” [36] “16-078-GFM” “16-078-GTS” “16-078-THA” “16-080-GFM” “16-080-GTS” [41] “16-080-SVZ” “16-080-THA” “16-082-SVZ” “16-116-GFM” “16-116-GTS” [46] “16-137-GFM” “16-137-GTS” “16-137-SVZ” “16-137-THA” “17-003-GFM” [51] “17-003-GTS” “17-003-SVZ” “17-003-THA” “17-005-GFM” “17-005-GTS” [56] “17-005-SVZ” “17-005-THA” “17-016-GFM” “17-016-GTS” “17-016-SVZ” [61] “17-016-THA” “17-043-GFM” “17-043-GTS” “17-043-SVZ” “17-078-GFM” [66] “17-078-GTS” “17-078-SVZ” “17-078-THA” “17-097-GFM” “17-097-GTS” [71] “17-097-SVZ” “17-124-GFM” “17-124-GTS” “17-124-SVZ” “17-124-THA” [76] “18-018-GFM” “18-018-SVZ” “18-018-THA” “18-021-GFM” “18-021-GTS” [81] “18-021-SVZ” “18-021-THA” “18-064-GFM” “18-064-GTS” “18-064-SVZ” [86] “18-064-THA” “18-105-GFM” “18-105-GTS” “18-105-THA” “18-112-GFM” [91] “18-112-GTS” “18-112-THA” “MG-03-SVZ” “MG-09-GFM” “MG-11-GFM” [96] “MG-11-SVZ”
params = BiocParallel::MulticoreParam(workers=4, progressbar=T)
register(params)
registerDoParallel(4)
# To include cause of death and C1-C4
metadata4deg$cause_of_death_categories[metadata4deg$cause_of_death_categories %in% NA] <- "Other"
# table(metadata4deg$cause_of_death_categories)
metadata4deg$C1 = metadata4deg$C1 %>% replace_na(median(metadata4deg$C1, na.rm = T))
metadata4deg$C2 = metadata4deg$C2 %>% replace_na(median(metadata4deg$C2, na.rm = T))
metadata4deg$C3 = metadata4deg$C3 %>% replace_na(median(metadata4deg$C3, na.rm = T))
metadata4deg$C4 = metadata4deg$C4 %>% replace_na(median(metadata4deg$C4, na.rm = T))
# Check variance partition version
# packageVersion("variancePartition") # Must be 1.17.7
# The variable to be tested should be a fixed effect
form <- ~ main_diagnosis + sex + (1|donor_id) + age + tissue + (1|cause_of_death_categories) + C1 + C2 + C3 + C4 + picard_pct_mrna_bases + picard_summed_median + picard_pct_ribosomal_bases
# estimate weights using linear mixed model of dream
vobjDream = suppressWarnings( voomWithDreamWeights( genes_counts4deg, form, metadata4deg ) ) # supressing messages because of Biocparallel was generating a lot of messages
# Fit the dream model on each gene
# By default, uses the Satterthwaite approximation for the hypothesis test
fitmm = suppressWarnings (dream( vobjDream, form, metadata4deg ))
# Examine design matrix
# createDT(fitmm$design, 3)
res_dream <- data.frame(topTable(fitmm, coef='main_diagnosisParkinson',
number=nrow(genes_counts4deg), sort.by = "p"), check.names = F)
The t-statistics are not directly comparable since they have different degrees of freedom. In order to be able to compare test statistics, we report z.std which is the p-value transformed into a signed z-score. This can be used for downstream analysis.
res = res_dream
p = ggplot(res, aes(P.Value))
p + geom_density(color="darkblue", fill="lightblue") +
theme_classic() +
ggtitle("FDR Distribution")
p = ggplot(res, aes(logFC))
p + geom_density(color = "darkblue", fill = "lightblue") +
theme_classic() +
ggtitle("Fold Change Distribution")
plot.data = res
plot.data$id = rownames(plot.data)
data = data.frame(plot.data)
data$P.Value = -log10(data$P.Value)
data$fifteen = as.factor(abs(data$adj.P.Val < 0.05))
ma = ggplot(data, aes(AveExpr, logFC, color = fifteen))
ma + geom_point() +
scale_color_manual(values = c("black", "red"), labels = c ("> 0.05", "< 0.05")) +
labs(title = "MA plot", color = "labels") +
theme_classic()
#theme(plot.title = element_text(hjust = 0.5)) + ylim (-10,10) + xlim(-4,22)
vp = ggplot(data, aes(logFC, P.Value, color = fifteen))
vp + geom_point() +
scale_color_manual(values = c("black", "red"), labels = c("> 0.05", "< 0.05")) +
labs(title = "Gene Level Volcano Plot", color = "FDR") +
#theme(plot.title = element_text(hjust = 0.5)) +
theme_classic() +
xlim(-10,10) + ylim(0, 10) + ylab("-log10 pvalue")
## Get conversion table for Gencode 30
gencode_30 = read.table("~/pd-omics/katia/ens.geneid.gencode.v30")
colnames(gencode_30) = c("ensembl","symbol")
res$ensembl = rownames(res)
res_name = merge(res, gencode_30, by="ensembl")
rownames(res_name) = res_name$ensembl
res_name = res_name[order(res_name$adj.P.Val), ]
res_name = res_name[, c("symbol", "logFC", "AveExpr", "t", "P.Value", "adj.P.Val", "z.std")]
createDT(res_name)
LogFC > 0 is up in Case from Dream.
top_6 = head(res_name)
top_6$ensembl = rownames(top_6)
rownames(metadata4deg) = metadata4deg$donor_tissue
genes_voom = genes_counts_voom_3rd[, rownames(metadata4deg)] # Voom 1st pass only for the samples used in this comparison
gene2check = as.data.frame( genes_voom[rownames(top_6) ,])
gene2check$ensembl = rownames(gene2check)
gene2check = merge(gene2check, top_6[, c("symbol", "ensembl")], by = "ensembl")
gene2check_m = melt(gene2check, id.vars = c("ensembl", "symbol"))
gene2check_charac = merge(gene2check_m, metadata4deg, by.x = "variable", by.y = "donor_tissue")
ggplot(gene2check_charac, aes(x = main_diagnosis, y = value, fill = main_diagnosis)) +
geom_boxplot(notch = F, na.rm = T, outlier.color = NA) +
geom_jitter() +
theme_classic() +
facet_wrap(~symbol, scales = "free_y") +
ggpubr::stat_compare_means(label = "p.format", label.x.npc = "centre", method = "wilcox.test")
R version 3.6.2 (2019-12-12) Platform: x86_64-pc-linux-gnu (64-bit) Running under: CentOS Linux 7 (Core)
Matrix products: default BLAS/LAPACK: /hpc/packages/minerva-centos7/intel/parallel_studio_xe_2019/compilers_and_libraries_2019.0.117/linux/mkl/lib/intel64_lin/libmkl_gf_lp64.so
locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages: [1] parallel stats graphics grDevices utils datasets methods
[8] base
other attached packages: [1] tidyr_1.0.2 dplyr_0.8.5 doParallel_1.0.15
[4] iterators_1.0.12 ggpubr_0.2.5 magrittr_1.5
[7] statmod_1.4.34 BiocParallel_1.20.1 variancePartition_1.17.7 [10] Biobase_2.46.0 BiocGenerics_0.32.0 scales_1.1.0
[13] foreach_1.4.8 reshape2_1.4.3 ggplot2_3.3.0
[16] gplots_3.0.3 RColorBrewer_1.1-2 edgeR_3.28.1
[19] limma_3.42.2 rmarkdown_2.1
loaded via a namespace (and not attached): [1] jsonlite_1.6.1 splines_3.6.2 gtools_3.8.1
[4] shiny_1.4.0 assertthat_0.2.1 BiocManager_1.30.10 [7] yaml_2.2.1 progress_1.2.2 numDeriv_2016.8-1.1 [10] pillar_1.4.3 lattice_0.20-40 glue_1.3.1
[13] digest_0.6.25 promises_1.1.0 ggsignif_0.6.0
[16] minqa_1.2.4 colorspace_1.4-1 httpuv_1.5.2
[19] htmltools_0.4.0 Matrix_1.2-18 plyr_1.8.6
[22] pkgconfig_2.0.3 xtable_1.8-4 purrr_0.3.3
[25] gdata_2.18.0 later_1.0.0 lme4_1.1-21
[28] tibble_2.1.3 farver_2.0.3 ellipsis_0.3.0
[31] DT_0.12 withr_2.1.2 pbkrtest_0.4-8.6
[34] mime_0.9 crayon_1.3.4 evaluate_0.14
[37] nlme_3.1-145 MASS_7.3-51.5 tools_3.6.2
[40] prettyunits_1.1.1 hms_0.5.3 lifecycle_0.2.0
[43] stringr_1.4.0 munsell_0.5.0 locfit_1.5-9.1
[46] colorRamps_2.3 compiler_3.6.2 caTools_1.18.0
[49] rlang_0.4.5 grid_3.6.2 nloptr_1.2.2
[52] htmlwidgets_1.5.1 crosstalk_1.0.0 bitops_1.0-6
[55] labeling_0.3 boot_1.3-24 gtable_0.3.0
[58] codetools_0.2-16 lmerTest_3.1-1 R6_2.4.1
[61] knitr_1.28 fastmap_1.0.1 KernSmooth_2.23-16 [64] stringi_1.4.6 Rcpp_1.0.6 vctrs_0.2.4
[67] tidyselect_1.0.0 xfun_0.12