Using Dream | Depression x CT.
Differential expression for repeated measures (dream) uses a linear model model to increase power and decrease false positives for RNA-seq datasets with multiple measurements per individual. The analysis fits seamlessly into the widely used workflow of limma/voom (Law et al. 2014).
expression_dir = "~/ad-omics_hydra/microglia_omics/expression_tables/added_pilot_314s/expr_4brain_regions/"
work_plots = "~/pd-omics/katia/Microglia/MiGA_public_release/DE_diagnosis/"
metadata_path = "~/pd-omics/katia/Microglia/mic_255s/metadata_files/"
load(paste0(expression_dir, "Expression_filt_255s.Rdata"))
# dim(genes_counts_exp_3rd) # 19376 255
load(paste0(metadata_path, "metadata_255filt_eng_29jun2020.Rdata"))
# str(metadata3rd_pass)
The Depression samples are under the main_diagnosis = Psychiatric Diagnosis.
metadata <- metadata3rd_pass
samples_case = as.character(metadata$donor_tissue[metadata$diagnosis %in% "Depression" | metadata$diagnosis %in% "Depression with autism" ])
samples_control = as.character(metadata$donor_tissue[metadata$main_diagnosis %in% "Control"])
rownames(metadata) <- metadata$donor_tissue
#To pick up only the samples for DEG analysis
genes_counts4deg = genes_counts_exp_3rd[, colnames(genes_counts_exp_3rd) %in% c(samples_case,samples_control) ]
metadata4deg = metadata[rownames(metadata) %in% c(samples_case,samples_control) ,]
# all(rownames(metadata4deg) == colnames(genes_counts4deg)) # # The rownames of the metadata needs to be in the same order as colnames expression table
# str(metadata4deg) #shows class for all columns
# table(metadata4deg$main_diagnosis)
[1] “16-024-GFM” “16-024-SVZ” “16-024-THA” “16-028-GTS” “16-028-THA” [6] “16-049-GFM” “16-049-GTS” “16-049-SVZ” “16-049-THA” “16-110-GFM” [11] “16-110-GTS” “16-110-SVZ” “16-110-THA” “16-111-GFM” “16-111-SVZ” [16] “16-111-THA” “16-112-GFM” “16-112-GTS” “16-112-SVZ” “16-112-THA” [21] “16-117-GFM” “16-117-GTS” “16-117-SVZ” “16-117-THA” “16-118-GFM” [26] “16-118-GTS” “16-118-SVZ” “16-118-THA” “17-017-GFM” “17-017-SVZ” [31] “17-017-THA” “17-029-GFM” “17-029-GTS” “17-029-SVZ” “17-029-THA” [36] “17-032-GTS” “17-032-SVZ” “17-032-THA” “17-074-GFM” “17-074-GTS” [41] “17-074-THA” “17-094-GFM” “17-094-GTS” “17-094-SVZ” “17-094-THA” [46] “17-099-GFM” “17-099-GTS” “17-099-SVZ” “17-099-THA” “17-136-GFM” [51] “17-136-GTS” “17-136-SVZ” “17-136-THA” “18-010-GFM” “18-010-GTS” [56] “18-010-SVZ” “18-010-THA” “18-012-SVZ” “18-012-THA” “18-023-GFM” [61] “18-023-GTS” “18-023-SVZ” “18-023-THA” “18-063-GFM” “18-063-GTS” [66] “18-063-THA” “18-074-GFM” “18-074-GTS” “18-074-SVZ” “18-074-THA” [71] “18-079-GFM” “18-079-GTS” “18-079-SVZ” “18-079-THA”
[1] “14-005-GFM” “14-005-GTS” “14-015-GFM” “14-015-GTS” “14-029-GFM” [6] “14-029-GTS” “14-051-GTS” “14-069-GFM” “14-069-GTS” “14-075-GFM” [11] “14-075-GTS” “15-018-GFM” “15-018-GTS” “15-027-GFM” “15-034-GFM” [16] “15-055-GFM” “15-055-GTS” “15-074-THA” “15-087-GFM” “15-087-GTS” [21] “15-087-THA” “15-089-GFM” “15-089-GTS” “15-089-THA” “16-027-GFM” [26] “16-027-GTS” “16-038-GFM” “16-046-GFM” “16-046-GTS” “16-046-THA” [31] “16-056-GFM” “16-056-THA” “16-067-GFM” “16-067-GTS” “16-067-THA” [36] “16-078-GFM” “16-078-GTS” “16-078-THA” “16-080-GFM” “16-080-GTS” [41] “16-080-SVZ” “16-080-THA” “16-082-SVZ” “16-116-GFM” “16-116-GTS” [46] “16-137-GFM” “16-137-GTS” “16-137-SVZ” “16-137-THA” “17-003-GFM” [51] “17-003-GTS” “17-003-SVZ” “17-003-THA” “17-005-GFM” “17-005-GTS” [56] “17-005-SVZ” “17-005-THA” “17-016-GFM” “17-016-GTS” “17-016-SVZ” [61] “17-016-THA” “17-043-GFM” “17-043-GTS” “17-043-SVZ” “17-078-GFM” [66] “17-078-GTS” “17-078-SVZ” “17-078-THA” “17-097-GFM” “17-097-GTS” [71] “17-097-SVZ” “17-124-GFM” “17-124-GTS” “17-124-SVZ” “17-124-THA” [76] “18-018-GFM” “18-018-SVZ” “18-018-THA” “18-021-GFM” “18-021-GTS” [81] “18-021-SVZ” “18-021-THA” “18-064-GFM” “18-064-GTS” “18-064-SVZ” [86] “18-064-THA” “18-105-GFM” “18-105-GTS” “18-105-THA” “18-112-GFM” [91] “18-112-GTS” “18-112-THA” “MG-03-SVZ” “MG-09-GFM” “MG-11-GFM” [96] “MG-11-SVZ”
Depression (74 samples) is a sub-group of the main_diagnosis Psychiatric diagnosis.
params = BiocParallel::MulticoreParam(workers=4, progressbar=T)
register(params)
registerDoParallel(4)
# To include cause of death and C1-C4
metadata4deg$cause_of_death_categories[metadata4deg$cause_of_death_categories %in% NA] <- "Other"
# table(metadata4deg$cause_of_death_categories)
metadata4deg$C1 = metadata4deg$C1 %>% replace_na(median(metadata4deg$C1, na.rm = T))
metadata4deg$C2 = metadata4deg$C2 %>% replace_na(median(metadata4deg$C2, na.rm = T))
metadata4deg$C3 = metadata4deg$C3 %>% replace_na(median(metadata4deg$C3, na.rm = T))
metadata4deg$C4 = metadata4deg$C4 %>% replace_na(median(metadata4deg$C4, na.rm = T))
# Check variance partition version
# packageVersion("variancePartition") # Must be 1.17.7
# The variable to be tested should be a fixed effect
form <- ~ main_diagnosis + sex + (1|donor_id) + age + tissue + (1|cause_of_death_categories) + C1 + C2 + C3 + C4 + picard_pct_mrna_bases + picard_summed_median + picard_pct_ribosomal_bases
# estimate weights using linear mixed model of dream
vobjDream = suppressWarnings( voomWithDreamWeights( genes_counts4deg, form, metadata4deg ) ) # supressing messages because of Biocparallel was generating a lot of messages
# Fit the dream model on each gene
# By default, uses the Satterthwaite approximation for the hypothesis test
fitmm = suppressWarnings (dream( vobjDream, form, metadata4deg ))
# Examine design matrix
#createDT(fitmm$design, 3)
res_dream <- data.frame(topTable(fitmm, coef='main_diagnosisPsychiatric diagnosis',
number=nrow(genes_counts4deg), sort.by = "p"), check.names = F)
The t-statistics are not directly comparable since they have different degrees of freedom. In order to be able to compare test statistics, we report z.std which is the p-value transformed into a signed z-score. This can be used for downstream analysis.
res = res_dream
p = ggplot(res, aes(P.Value))
p + geom_density(color="darkblue", fill="lightblue") +
theme_classic() +
ggtitle("FDR Distribution")
p = ggplot(res, aes(logFC))
p + geom_density(color = "darkblue", fill = "lightblue") +
theme_classic() +
ggtitle("Fold Change Distribution")
plot.data = res
plot.data$id = rownames(plot.data)
data = data.frame(plot.data)
data$P.Value = -log10(data$P.Value)
data$fifteen = as.factor(abs(data$adj.P.Val < 0.05))
ma = ggplot(data, aes(AveExpr, logFC, color = fifteen))
ma + geom_point() +
scale_color_manual(values = c("black", "red"), labels = c ("> 0.05", "< 0.05")) +
labs(title = "MA plot", color = "labels") +
theme_classic()
#theme(plot.title = element_text(hjust = 0.5)) + ylim (-10,10) + xlim(-4,22)
vp = ggplot(data, aes(logFC, P.Value, color = fifteen))
vp + geom_point() +
scale_color_manual(values = c("black", "red"), labels = c("> 0.05", "< 0.05")) +
labs(title = "Gene Level Volcano Plot", color = "FDR") +
#theme(plot.title = element_text(hjust = 0.5)) +
theme_classic() +
xlim(-10,10) + ylim(0, 10) + ylab("-log10 pvalue")
## Get conversion table for Gencode 30
gencode_30 = read.table("~/pd-omics/katia/ens.geneid.gencode.v30")
colnames(gencode_30) = c("ensembl","symbol")
res$ensembl = rownames(res)
res_name = merge(res, gencode_30, by="ensembl")
rownames(res_name) = res_name$ensembl
res_name = res_name[order(res_name$adj.P.Val), ]
res_name = res_name[, c("symbol", "logFC", "AveExpr", "t", "P.Value", "adj.P.Val", "z.std")]
createDT(res_name)
LogFC > 0 is up in Case from Dream.
top_6 = head(res_name)
top_6$ensembl = rownames(top_6)
rownames(metadata4deg) = metadata4deg$donor_tissue
genes_voom = genes_counts_voom_3rd[, rownames(metadata4deg)] # Voom 1st pass only for the samples used in this comparison
gene2check = as.data.frame( genes_voom[rownames(top_6) ,])
gene2check$ensembl = rownames(gene2check)
gene2check = merge(gene2check, top_6[, c("symbol", "ensembl")], by = "ensembl")
gene2check_m = melt(gene2check, id.vars = c("ensembl", "symbol"))
gene2check_charac = merge(gene2check_m, metadata4deg, by.x = "variable", by.y = "donor_tissue")
ggplot(gene2check_charac, aes(x = main_diagnosis, y = value, fill = main_diagnosis)) +
geom_boxplot(notch = F, na.rm = T, outlier.color = NA) +
geom_jitter() +
theme_classic() +
facet_wrap(~symbol, scales = "free_y") +
ggpubr::stat_compare_means(label = "p.format", label.x.npc = "centre", method = "wilcox.test")
R version 3.6.2 (2019-12-12) Platform: x86_64-apple-darwin15.6.0 (64-bit) Running under: macOS 10.16
Matrix products: default BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
locale: [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages: [1] parallel stats graphics grDevices utils datasets methods
[8] base
other attached packages: [1] tidyr_1.1.2 dplyr_1.0.2 doParallel_1.0.15
[4] iterators_1.0.12 ggpubr_0.2.4 magrittr_2.0.1
[7] statmod_1.4.32 BiocParallel_1.20.1 variancePartition_1.17.7 [10] Biobase_2.46.0 BiocGenerics_0.32.0 scales_1.1.1
[13] foreach_1.4.8 reshape2_1.4.4 ggplot2_3.3.2
[16] gplots_3.1.0 RColorBrewer_1.1-2 edgeR_3.28.0
[19] limma_3.42.0
loaded via a namespace (and not attached): [1] jsonlite_1.7.1 splines_3.6.2 gtools_3.8.2
[4] BiocManager_1.30.10 yaml_2.2.1 progress_1.2.2
[7] numDeriv_2016.8-1.1 pillar_1.4.7 lattice_0.20-38
[10] glue_1.4.2 digest_0.6.27 ggsignif_0.6.0
[13] minqa_1.2.4 colorspace_2.0-0 htmltools_0.5.0
[16] Matrix_1.2-18 plyr_1.8.6 pkgconfig_2.0.3
[19] purrr_0.3.4 lme4_1.1-21 tibble_3.0.4
[22] generics_0.1.0 farver_2.0.3 ellipsis_0.3.1
[25] DT_0.13 withr_2.3.0 pbkrtest_0.4-8.6
[28] crayon_1.3.4 evaluate_0.14 nlme_3.1-142
[31] MASS_7.3-51.6 tools_3.6.2 prettyunits_1.1.1
[34] hms_0.5.3 lifecycle_0.2.0 stringr_1.4.0
[37] munsell_0.5.0 locfit_1.5-9.1 colorRamps_2.3
[40] compiler_3.6.2 caTools_1.18.0 rlang_0.4.8
[43] grid_3.6.2 nloptr_1.2.1 htmlwidgets_1.5.2
[46] crosstalk_1.1.0.1 bitops_1.0-6 labeling_0.4.2
[49] rmarkdown_2.0 boot_1.3-23 gtable_0.3.0
[52] codetools_0.2-16 lmerTest_3.1-1 R6_2.5.0
[55] knitr_1.26 KernSmooth_2.23-16 stringi_1.5.3
[58] Rcpp_1.0.5 vctrs_0.3.5 tidyselect_1.1.0
[61] xfun_0.11